\(100^2-99^2+98^2-97^2+...+2^2-1\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+....+\left(2^2-1^2\right)\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+....+\left(2-1\right)\left(2+1\right)\)
\(=1.199+1.195+...+1.3\)
\(=199+195+....+3\)
\(=\left[\left(\dfrac{199-3}{4}\right)+1\right]:2.\left(199+3\right)=5050\)
\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)
\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)
\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)
\(=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)}{2}\)
\(=\dfrac{3^{32}-1}{2}\)
\(3\left(2^2+1\right)\left(2^4+1\right).....\left(2^{64}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{64}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right).....\left(2^{64}+1\right)\)
\(=\left(2^8-1\right)......\left(2^{64}+1\right)=2^{128}-1\)