Phân thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
CP Enderboy

Bài 2: Giải phương trình sau:

\(a,\frac{x+1}{3}+\frac{3\left(2x+1\right)}{4}=\frac{2x+3\left(x+1\right)}{6}+\frac{7+12x}{12}\)
\(b,\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)

Nguyễn Ngọc Lộc
27 tháng 2 2020 lúc 19:01

a, Ta có : \(\frac{x+1}{3}+\frac{3\left(2x+1\right)}{4}=\frac{2x+3\left(x+1\right)}{6}+\frac{7+12x}{12}\)

=> \(\frac{4\left(x+1\right)}{12}+\frac{9\left(2x+1\right)}{12}=\frac{2\left(2x+3\left(x+1\right)\right)}{12}+\frac{7+12x}{12}\)

=> \(4\left(x+1\right)+9\left(2x+1\right)=2\left(2x+3\left(x+1\right)\right)+7+12x\)

=> \(4\left(x+1\right)+9\left(2x+1\right)=2\left(2x+3x+3\right)+7+12x\)

=> \(4x+4+18x+9=4x+6x+6+7+12x\)

=> \(4x+18x-12x-6x-4x=6+7-4-9\)

=> \(0x=0\) ( Luôn đúng với mọi x )

Vậy phương trình có vô số nghiệm .

b, Ta có : \(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)

=> \(\frac{2-x}{2001}+1=\frac{1-x}{2002}+1-\frac{x}{2003}+1\)

=> \(\frac{2-x}{2001}+1=\frac{1-x}{2002}+1+\frac{-x}{2003}+1\)

=> \(\frac{2-x}{2001}+\frac{2001}{2001}=\frac{1-x}{2002}+\frac{2002}{2002}+\frac{-x}{2003}+\frac{2003}{2003}\)

=> \(\frac{2003-x}{2001}=\frac{2003-x}{2002}+\frac{2003-x}{2003}\)

=> \(\frac{2003-x}{2001}-\frac{2003-x}{2002}-\frac{2003-x}{2003}=0\)

=> \(\left(2003-x\right)\left(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

=> \(2003-x=0\)

=> \(x=2003\)

Vậy phương trình có tập nghiệm là \(S=\left\{2003\right\}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lyly Luta
Xem chi tiết
Thu Hà
Xem chi tiết
Sakura서 정
Xem chi tiết
Thu Hà
Xem chi tiết
Thu Hà
Xem chi tiết
Phạm Thị Huyền
Xem chi tiết
Park Lin
Xem chi tiết
Trần Khương
Xem chi tiết
Hoàng Bảo Ngọc
Xem chi tiết