Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R). Các đường cao AD, BE, CF cắt nhau tại H. Các đường thẳng BE và CF cắt đường tròn (O;R) tại Q và K. Gọi I là trung điểm BC, chứng minh I thuộc đường trong ngoại tiếp tam giác DEF
Cho tam giác ABC (AB<AC) nhọn nội tiếp đường tròn tâm O. Đường cao AD, BE, CF cắt nhau tại H. Gọi K là giao điểm của BE và CF.Đường thẳng đi qua F song song với AC cắt AK , AD lần lượt tại M,N. Chứng minh MF=NF
1.Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;R) có BE và CF là 2 đường cao cắt nhau tại H.
a) Chứng minh tứ giác BFEC nội tiếp đường tròn có tầm là I. Xác định vị trí của I
b) Tia AH cắt BC tại D. Chứng minh rằng : EB là tia phân giác của góc DEF
c) Vẽ tiếp tuyến xAy của (O). Chứng minh rằng OA vuông góc với EF
d) Đường thằng EF cắt (O) tại N và M (điểm F nằm giữa N,E ). Chứng minh rằng AN là tiếp tuyến của đường tròn ngoại tiếp tam giác NHD1.Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;R) có BE và CF là 2 đường cao cắt nhau tại H.
a) Chứng minh tứ giác BFEC nội tiếp đường tròn có tầm là I. Xác định vị trí của I
b) Tia AH cắt BC tại D. Chứng minh rằng : EB là tia phân giác của góc DEF
c) Vẽ tiếp tuyến xAy của (O). Chứng minh rằng OA vuông góc với EF
d) Đường thằng EF cắt (O) tại N và M (điểm F nằm giữa N,E ). Chứng minh rằng AN là tiếp tuyến của đường tròn ngoại tiếp tam giác NHD
Cho tam giác ABC nhọn nội tiếp (O) đường cao AD, BE cắt nhau tại H, AD cắt đường tròn tại A, ( A ≠ A, )
a) chứng minh H đối xứng A, qua BC
b) gọi K là điểm đối xứng của A qua O. Chứng minh BHCK là hình bình hành
c) Gọi G là trọng tâm tam giác ABC. chứng minh 3 điểm H,G,O thẳng hàng
Cho tam giác ABC nhọn. Đường tròn (O;R), đường kính BC cắt AB,AC lần lượt ở M và N. BN cắt CM tại D
a) Chứng minh tứ giác AMDN nội tiếp
b) Chứng minh góc MAD = OMC
c) Gọi I là tâm đường tròn ngoại tiếp tứ giác AMDN. Chứng minh MI là tiếp tuyến của (O;R)
Cho tam giác ABC nhọn (AB < AC), nội tiếp đường tròn (O), các đường cao AD,BE,CF cắt nhau tại H
a) Chứng minh rằng tứ giác CDHE, BCEF nội tiếp
b) Hai đường thẳng EF và BC cắt nhau tại M. Chứng minh MB.MC = ME.MF
c) Đường thẳng qua B song song với AC cắt AM, AH ần lượt tại I,K . Chứng minh HI = HK
Đã chứng minh đc a và b
Bài 1 : Trên nửa đường tròn (O;R) đường kính BA. tâm O, lấy hai điểm M, E (M ≠ E ≠ A ≠ B) sao cho hai đường thẳng AM và BE cắt nhau tại điểm C nằm ngoài (O); AE cắt BM tại D.
a) Chứng minh : MCED là một tứ giác nội tiếp và CD vuông góc với AB
b) Gọi H là giao điểm của CD và AB. Chứng minh : BE.BC = HB.BA
c) Chứng minh các tiếp tuyến tại M và E của đường tròn (O) cắt nhau tại một điểm nằm trên đường thẳng CD.
Bài 2 : Từ một điểm A bên ngoài đường tròn (O;R) dựng hai tiếp tuyến AB, AC và cát tuyến AMN (B,C là tiếp điểm, tia An nằm giữa hai tia AB và AO, M nằm giữa A và N). Gọi H là giao điểm của AO và BC.
a) Chứng minh : AO vuông góc BC và tứ giác ABOC nội tiếp đường tròn
b) Chứng minh : AM.AN = AH.AO
c) Đoạn thẳng AO cắt đường tròn (O) tại I. Chứng minh : MI là tia phân giác của góc AMH.
Bài 3 : Cho ΔABC có 3 góc nhọn (AB < AC) nội tiếp đường tròn tâm O bán kính R. Hai đường cao BE, CF cắt nhau tại H.
a) Chứng minh : Tứ giác AFHE, BFEC nội tiếp
b) Chứng minh : AF.AB = AE.AC
c) Kẻ đường kính AOK. Gọi M là trung điểm của BC. Chứng minh : 3 điểm H,M,K thẳng hàng
Cho tam giác ABC (có ba góc nhọn) nội tiếp đường tròn (O) và tia phân giác của góc B cắt đường tròn tại M. Các đường cao BD và CK của ∆ABC cắt nhau tại H.
a) Chứng minh rằng tứ giác ADHK nội tiếp một đường tròn.
b) Chứng minh rằng OM là tia phân giác của góc AOC.
c) Gọi I là giao điểm của OM và AC. Tính tỉ số OI BH .
Cho tam giác ABC có ba góc nhọn và AB>AC. Tam giác ABC nội tiếp đường tròn (O;R). Đường cao AH của tam giác ABC cắt đường tròn (O;R) tại điểm thứ hai là D. Kẻ DM vuông góc với AB tại M.
a) Chứng minh tứ giác BDHM nội tiếp đường tròn.
b) Chứng minh DA là tia phân giác của \(\widehat{MDC}\)
c) Gọi N là hình chiếu vuông góc của D lên đường thẳng AC, chứng minh ba điểm M, H, N thẳng hàng.
d) Chứng minh \(AB^2+AC^2+CD^2+BD^2=8R^2\)