\(\dfrac{x\left(3-x\right)\left(x^2+3\right)}{\left(x+1\right)^2}=2\)
<=> \(\dfrac{\left(3x-x^2\right)\left(x^2+3\right)}{x^2+2x+1}-2=0\)
<=> \(\dfrac{3x^3+9x-x^4-3x^2}{x^2+2x+1}-\dfrac{2\left(x^2+2x+1\right)}{x^2+2x+1}=0\)
=> 3x3 + 9x - x4 - 3x2 - 2x2 - 4x - 2 = 0
<=> - x4 + 3x3 - 5x2 + 5x - 2 = 0
<=> - x4 + x3 - 2x2 + 2x3 - 2x2 + 4x - x^2 + x - 2 = 0
<=> - x2(x2 - x + 2) + 2x(x2 - x + 2) - (x2 - x + 2) = 0
<=> (x2 - x + 2)(- x2 + 2x - 1) = 0
<=> - (x - 1)2(x2 - x + 2) = 0
<=> x = 1 (vì x2 - x + 2 \(\ge\) 1,75 > 0)
Vậy S = {1}
b/ \(2x+\dfrac{49}{2x+1}\le13\)
\(\Leftrightarrow\dfrac{x^2-6x+9}{2x+1}\le0\)
Vì \(x^2-6x+9=\left(x-3\right)^2\ge0\) nên
\(\Leftrightarrow2x+1\le0\)
\(\Leftrightarrow x\le-\dfrac{1}{2}\)