ĐKXĐ: \(a\ne1\)
a. \(\dfrac{3a^2-a+3}{a^3-1}+\dfrac{1-a}{a^2+a+1}+\dfrac{2}{1-a}\)
\(=\dfrac{3a^2-a+3+\left(1-a\right).\left(a-1\right)-2.\left(a^2+a+1\right)}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\dfrac{3a^2-a+3-a^2+2a-1-2a^2-2a-2}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\dfrac{-a+1}{\left(a-1\right).\left(a^2+a+1\right)}\)
\(=-\dfrac{1}{a^2+a+1}\)
a) Ta có: \(\dfrac{3a^2-a+3}{a^3-1}+\dfrac{1-a}{a^2+a+1}+\dfrac{2}{1-a}\)
\(=\dfrac{3a^2-a+3}{\left(a-1\right)\left(a^2+a+1\right)}-\dfrac{\left(a-1\right)^2}{\left(a-1\right)\left(a^2+a+1\right)}-\dfrac{2\left(a^2+a+1\right)}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\dfrac{3a^2-a+3-\left(a^2-2a+1\right)-2a^2-2a-2}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\dfrac{a^2-3a+1-a^2+2a-1}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\dfrac{-a}{\left(a-1\right)\left(a^2+a+1\right)}\)
b) Ta có: \(x-\dfrac{xy}{x+y}-\dfrac{x^3}{x^2y^2}\)
\(=x-\dfrac{xy}{x+y}-\dfrac{x}{y^2}\)
\(=\dfrac{xy^2\cdot\left(x+y\right)}{y^2\cdot\left(x+y\right)}+\dfrac{y^2\cdot xy}{y^2\cdot\left(x+y\right)}-\dfrac{x\cdot\left(x+y\right)}{y^2\cdot\left(x+y\right)}\)
\(=\dfrac{x^2y^2+xy^3+xy^3-x^2-xy}{y^2\cdot\left(x+y\right)}\)
\(=\dfrac{x^2y^2+2xy^3-x^2-xy}{y^2\cdot\left(x+y\right)}\)