Bài 1:Trong mặt phẳng với hệ toạ độác đường thẳng:
\(d_1:x+y+3=0\)
\(d_2:x-y-4=0\)
\(d_3:x-2y=0\)
Tìm toạ độ điểm M nằm trên đường thẳng \(d_3\) sao cho khoảng cách từ M đến đường thẳng \(d_1\) bằng hai lần khoảng cách từ M đến đường thẳng \(d_2\)
Bài 2: Tìm hệ số của số hạng chứa \(x^{26}\) trong khai triển nhị thứ Niutơn của \(\left(\dfrac{1}{x^4}+x^7\right)^n\), biết rằng \(C^1_{2n+1}+C_{2n+1}^2+....+C_{2n+1}=2^{20}-1\)
( n nguyên dương, \(C_n^k\) là tổ hợp chập k của n phần tử)
Câu 2 đề thiếu rồi kìa. Cái cuối cùng là tổ hợp chập bao nhiêu của 2n + 1 thế???
1/ Vì M thuộc \(d_3\) nên ta có tọa độ của M là: \(M\left(2a;a\right)\)
Khoản cách từ M đến \(d_1\) là:
\(d\left(M,d_1\right)=\dfrac{\left|2a+a+3\right|}{\sqrt{1^2+1^2}}=\dfrac{\left|3a+3\right|}{\sqrt{2}}\)
Khoản cách từ M đến \(d_2\) là:
\(d\left(M,d_2\right)=\dfrac{\left|2a-a-4\right|}{\sqrt{1^2+1^2}}=\dfrac{\left|a-4\right|}{\sqrt{2}}\)
Theo đề bài ta có:
\(\dfrac{\left|3a+3\right|}{\sqrt{2}}=2.\dfrac{\left|a-4\right|}{\sqrt{2}}\)
\(\Leftrightarrow\left|3a+3\right|=2.\left|a-4\right|\)
\(\Leftrightarrow a^2+10a-11=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-11\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}M\left(2;1\right)\\M\left(-22;-11\right)\end{matrix}\right.\)
2/ Ta có:
\(C_{2n+1}^1+C_{2n+2}^2+...+C_{2n+1}^n=2^{20}-1\)
\(\Leftrightarrow2\left(C_{2n+1}^0+C_{2n+1}^1+C_{2n+2}^2+...+C_{2n+1}\right)^n=2^{21}\)
\(\Leftrightarrow C_{2n+1}^0+C_{2n+1}^1+C_{2n+2}^2+...+C_{2n+1}^n+...+C_{2n+1}^{2n+1}=2^{21}\)
\(\Leftrightarrow2^{2n+1}=2^{21}\)
\(\Leftrightarrow n=10\)
Ta có số hạng tổng quát trong khai triển của \(\left(\dfrac{1}{x^4}+x^7\right)^{10}\) là:
\(C_{10}^k.\left(\dfrac{1}{x^4}\right)^{10-k}.\left(x^7\right)^k=C_{10}^k.x^{11k-40}\)
Để số hạng chứa \(x^{26}\) thì \(11k-40=26\)
\(\Leftrightarrow k=6\)
Vậy hệ số cần tìm là: \(C_{10}^6\)