Bài 1: Tìm x biết:
a) \(\dfrac{6}{5}-2\left|1-3x\right|=1\dfrac{2}{3}\)
\(2\left|1-3x\right|=\dfrac{6}{5}-1\dfrac{2}{3}\)
\(2\left|1-3x\right|=\dfrac{-7}{15}\)
\(\left|1-3x\right|=\dfrac{-7}{15}:2\)
\(\left|1-3x\right|=\dfrac{-7}{30}\)
\(\left|1-3x\right|\in N\) nhưng \(\dfrac{-7}{30}\notin N\)
\(\Rightarrow x=\varnothing\)
b) \(\left(2,8x+50\right):\dfrac{-3}{2}=51\)
\(\left(2,8x+50\right)=51.\dfrac{-3}{2}\)
\(2,8x+50=\dfrac{-153}{2}\)
\(2,8x=\dfrac{-153}{2}-50\)
\(2,8x=\dfrac{-253}{2}\)
\(x=\dfrac{-253}{2}:2,8\)
\(x=\dfrac{-1265}{28}\)
c) \(\dfrac{x-2}{-2}=\dfrac{x+4}{3}\)
\(\Rightarrow\left(x-2\right).3=-2.\left(x+4\right)\)
\(x.3-2.3=\left(-2\right).x+\left(-2\right).4\)
\(3x-6=\left(-2\right)x+\left(-8\right)\)
\(3x-\left(-2\right)x=6+\left(-8\right)\)
\(5x=-2\)
\(x=\left(-2\right):5\)
\(x=\dfrac{-2}{5}\)
d) \(4\left(3-2x\right)-5\left(x-1\right)=12\)
\(4.3-4.2x-5x+5.1=12\)
\(12-8x-5x+5=12\)
\(12+\left(-8\right)x+\left(-5\right)x+5=12\)
\(12+\left(-13\right)x+5=12\)
\(\left(-13\right)x=12-12-5\)
\(\left(-13\right)x=-5\)
\(x=\left(-5\right):\left(-13\right)\)
\(x=\dfrac{5}{13}\)
Bài 2: Chứng minh:
\(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)
\(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{2}-\dfrac{1}{100}< \dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\) (đpcm)
bài 1 tự làm na mk giải giúp bài 2 đặt vế trái là A A<1/2.3+1/3.4+1/4.5+......+1/99.100 A<1/2-1/3+1/3-1/4+1/4-1/5+....+1/99-1/100 A<1/2-1/100<1/2 vậy A<1/2