a: Xét tứ giác ABKH có
AB//HK
AB=HK
Do đó: ABKH là hình bình hành
mà \(\widehat{AHK}=90^0\)
nên ABKH là hình chữ nhật
a: Xét tứ giác ABKH có
AB//HK
AB=HK
Do đó: ABKH là hình bình hành
mà \(\widehat{AHK}=90^0\)
nên ABKH là hình chữ nhật
Bài 17. Cho hình thang cân ABCD (AB// CD và AB < CD) có AH, BK là đường cao
a) Tứ giác ABKH là hình gì? Vì sao?
b) Chứng minh DH = CK;
c) Gọi E là điểm đối xứng với D qua H. Chứng minh ABCE là hình bình hành;
d) Chứng minh DH = (CD – AB).
mình cần câu c ,d
Bài 17. Cho hình thang cân ABCD (AB// CD và AB < CD) có AH, BK là đường cao
c) Gọi E là điểm đối xứng với D qua H. Chứng minh ABCE là hình bình hành;
d) Chứng minh DH = (CD – AB).
Cho tam giác ABC vuông tại A (AB<AC),trung tuyến AM, đường cao AH. Trên tia đối MA lấy D sao cho MD=MA
a, tứ giác ABCD là hình gì, vì sao
b, gọi I là trục đối xứng của A qua BC. Chứng minh BC// ID
c, chứng minh tứ giác BIDC là hình thang cân
Cho hình chữ nhật ABCD ( AB AD > ), gọi M là trung điểm cạnh AB . Từ M kẻ MN ^ CD tại N . 1) Chứng minh tứ giác AMND là hình chữ nhật. 2) Gọi K là điểm đối xứng của D qua M . a) Tứ giác AKBD là hình gì? Giải thích? b) Chứng minh B là trung điểm của đoạn thẳng KC
Bài 4. Cho hình chữ nhật ABCD (AB = 2AD), gọi M là trung điểm của AB. Từ M kẻ MN vuông góc CD tại N
a) Chứng minh tứ giác AMND là hình chữ nhật
b) Gọi K là điểm đối xứng với D qua M. Chứng minh B là trung điểm của KC
c) Gọi I là điểm giao của BD và CM. Biết AB = 2AD. Chứng minh NI = 1/3 BD
Giúp em với ạ
Bài 2: Cho ABC cân tại A có H là trung điểm BC.
a) Chứng minh AH ⊥ BC tại H.
b) Gọi I là trung điểm AB và D là điểm đối xứng của H qua I. Chứng minh tứ giác BDAH là hình chữ nhật.
c) Gọi K là trung điểm AC và E là điểm đối xứng của H qua K. Chứng minh AECH là hình chữ nhật. Suy ra
ba điểm D, A, E thẳng hàng.
d) Chứng minh D đối xứng với E qua A
Cho ABC vuông tại A. Gọi D, E, F lần lượt là trung điểm AB, AC, BC a/ Chứng minh DF // AC và cho biết tứ giác ADFC là hình gì, vì sao ? b/ Chứng minh ADFE là hình chữ nhật. So sánh AF và DE c/ Gọi K là điểm đối xứng của F qua tâm E. Chứng minh AFCK là hình thoi.
Cho tứ giác ABCD . Gọi E, F,G,H lần lược là trung điểm của AB, BC, CD, AD Bé vịt nhỏ A) chứng minh rằng : tứ giác EFGH là hình bình hành b) cho AC vuông góc với BD . Chứng minh EFGH là hình chữ nhật . ( Vẽ hình , ghi giả thiết , kết luận đc 0.5 ₫
Cho tam giác ABC vuông tại A (AB<AC) đường trung tuyến AD. Gọi I là trung điểm cạnh AB, E là điểm đối xứng với D qua I, F là điểm đối xứng với B qua E. Chứng minh rằng:
a) Tứ giác ACDI là hình thang vuông.
b) Tứ giác ADBE là hình thoi.
c) AF = AC.