Bài 14: Cho ABC có ba góc nhọn và AB < AC. Qua B kẻ đường thẳng vuông góc với AC
tại điểm M, qua C kẻ đường thẳng vuông góc với AB tại điểm N.
a) Chứng minh: \(\widehat{ABM}\)=\(\widehat{ACN}\)
b) Trên tia đối của tia BM lấy điểm D sao cho BD = AC. Trên tia đối của tia CN lấy điểm E
sao cho CE = AB. Chứng minh rằng: △ABD = △ECA
c) Chứng minh: AD ⏊ AE
a: \(\widehat{ABM}+\widehat{A}=90^0\)
\(\widehat{ACN}+\widehat{A}=90^0\)
Do đó: \(\widehat{ABM}=\widehat{ACN}\)