Bài 1.3:
a) Ta có: \(\left\{{}\begin{matrix}5\sqrt{7}=\sqrt{25.7}=\sqrt{175}\\7\sqrt{5}=\sqrt{49.5}=\sqrt{245}\end{matrix}\right.\)
Do \(245>175\Rightarrow7\sqrt{5}>5\sqrt{7}\Rightarrow\sqrt{7\sqrt{5}}=\sqrt{5\sqrt{7}}\)
b) Ta có: \(21+4\sqrt{5}=\left(2\sqrt{5}\right)^2+2.2\sqrt{5}+1=\left(2\sqrt{5}+1\right)^2\)
\(\Rightarrow7-\sqrt{21+4\sqrt{5}}=7-\left(2\sqrt{5}+1\right)=6-2\sqrt{5}\)
Lại có: \(\left(\sqrt{5}-1\right)^2=6-2\sqrt{5}\)
\(\Rightarrow7-\sqrt{21+4\sqrt{5}}=\left(\sqrt{5}-1\right)^2\) \(\Rightarrow\sqrt{7-\sqrt{21+4\sqrt{5}}}=\sqrt{5}-1\)