Bài 3:
c. \(\sqrt{x^2+9}+3=2x\)
<=> \(\sqrt{x^2+9}=2x-3\)
<=> x2 + 9 = (2x - 3)2
<=> x2 + 9 = 4x2 - 12x + 9
<=> 9 - 9 = 4x2 - x2 - 12x
<=> 3x2 - 12x = 0
<=> 3x(x - 4) = 0
<=> \(\left[{}\begin{matrix}3x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Bài 3:
a. ĐKXĐ: $x\geq \frac{-3}{5}$
PT $\Leftrightarrow 3\sqrt{4(5x+3)}-\frac{2}{3}\sqrt{9(5x+3)}=2$
$\Leftrightarrow 3.\sqrt{4}.\sqrt{5x+3}-\frac{2}{3}.\sqrt{9}.\sqrt{5x+3}=2$
$\Leftrightarrow 6\sqrt{5x+3}-2\sqrt{5x+3}=2$
$\Leftrightarrow 4\sqrt{5x+3}=2$
$\Leftrightarrow \sqrt{5x+3}=\frac{1}{2}$
$\Leftrightarrow 5x+3=\frac{1}{4}$
$\Leftrightarrow x=\frac{-11}{20}$ (tm)
b. ĐKXĐ: $x\geq 3$
PT $\Leftrightarrow \sqrt{4(x-3)}-6\sqrt{\frac{1}{4}(x-3)}=10-\sqrt{9(x-3)}$
$\Leftrightarrow 2\sqrt{x-3}-3\sqrt{x-3}=10-3\sqrt{x-3}$
$\Leftrightarrow 2\sqrt{x-3}=10$
$\Leftrightarrow \sqrt{x-3}=5$
$\Leftrightarrow x-3=25$
$\Leftrightarrow x=28$ (tm)
c.
PT $\Leftrightarrow \sqrt{x^2+9}=2x-3$
\(\Rightarrow \left\{\begin{matrix}
2x-3\geq 0\\
x^2+9=(2x-3)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x\geq \frac{3}{2}\\
3x^2-12x=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x\geq \frac{3}{2}\\
3x(x-4)=0\end{matrix}\right.\)
$\Leftrightarrow x=4$
d. PT \(\Rightarrow \left\{\begin{matrix} 1-5x\geq 0\\ 9x^2-6x+1=(1-5x)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq \frac{1}{5}\\ 16x^2-4x=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\leq \frac{1}{5}\\ 4x(4x-1)=0\end{matrix}\right.\Leftrightarrow x=0\)