Bài 4: Đường trung bình của tam giác, hình thang

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Jim Khánh Hưng

Bài 12. Cho tam giác ABC vuông cân tại A, điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho AD = AE. Đường thắng đi qua D và vuông góc với BE cắt BC tại I. Đường thằng đi qua A và vuông góc với BE cắt BC tại K. a Lấy điểm N thuộc tia đối của tia AB sao cho AN = AD. Chứng minh rằng BELCN. b. Chứng minh rằng IK = KC.

Nguyễn Lê Phước Thịnh
11 tháng 7 2020 lúc 16:32

a) Sửa đề: Chứng minh BDEC là hình thang cân

Ta có: AD+DB=AB(D nằm giữa A và B)

AE+EC=AC(E nằm giữa A và C)

mà AD=AE(gt)

và AB=AC(ΔABC vuông cân tại A)

nên DB=EC

\(\Rightarrow\frac{DB}{EC}=1\)

\(\frac{AD}{AE}=1\)(vì AD=AE)

nên \(\frac{AD}{AE}=\frac{DB}{EC}\)

hay \(\frac{AD}{DB}=\frac{AE}{EC}\)

Xét ΔABC có

\(\frac{AD}{DB}=\frac{AE}{EC}\)(cmt)

Do đó: DE//BC(định lí Ta lét đảo)

Ta có: ΔABC vuông cân tại A(gt)

\(\Rightarrow\widehat{ACB}=\widehat{ABC}=45^0\)(số đo của các góc ở đáy trong ΔABC vuông cân tại A)

hay \(\widehat{DBC}=\widehat{ECB}\)

Xét tứ giác BDEC có DE//BC(cmt)

nên BDEC là hình thang(định nghĩa hình thang)

Xét hình thang BDEC có \(\widehat{DBC}=\widehat{ECB}\)(cmt)

nên BDEC là hình thang cân(dấu hiệu nhận biết hình thang cân)


Các câu hỏi tương tự
Phạm Tố Uyên
Xem chi tiết
Chanhh
Xem chi tiết
Chanhh
Xem chi tiết
Vu Thi Quynh Nga
Xem chi tiết
Nguyễn Kim Minh Anh
Xem chi tiết
Phạm Khánh Vân
Xem chi tiết
lưu ly
Xem chi tiết
cute tannie
Xem chi tiết
ngọc hân
Xem chi tiết