Bài 1:
a) dễ, tự làm :)))
b) \(B=2^{100}-2^{99}-2^{98}-...-2^2-2^1-1.\)
\(\Rightarrow B=2^{100}-\left(2^{99}+2^{98}+2^{97}+...+2^2+2^1+1\right).\)
Đặt: \(M=2^{99}+2^{98}+2^{97}+...+2^2+2^1+1.\)
\(\Rightarrow2M=2\left(2^{99}+2^{98}+2^{97}+...+2^2+2^1+1\right).\)
\(\Rightarrow2M=2^{100}+2^{99}+2^{98}+...+2^3+2^2+2^1.\)
\(\Rightarrow2M-M=\left(2^{100}+2^{99}+2^{98}+...+2^3+2^2+2^1\right)-\left(2^{99}+2^{98}+2^{97}+...+2^2+2^1+1\right).\)
\(\Rightarrow M=2^{100}-1.\)
Ta có: \(B=2^{100}-\left(2^{99}+2^{98}+2^{97}+...+2^2-2^1-2\right).\)
\(\Rightarrow B=2^{100}-\left(2^{100}-1\right).\)
\(\Rightarrow B=\left(2^{100}-2^{100}\right)+1.\)
\(\Rightarrow B=1.\)
Vậy..........
Bài 2:
a) \(\left(x-1\right)\left(x-5\right)< 0.\)
\(\Rightarrow x-1\) và \(x-5\) trái dấu.
mà \(x-1>x-5.\)
\(\Rightarrow\left[{}\begin{matrix}x-1>0.\\x-5< 0.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>1.\\x< 5.\end{matrix}\right.\Leftrightarrow1< x< 5.\)
mà \(x\in Z.\)
\(\Rightarrow x\in\left\{2;3;4\right\}.\)
Vậy..........
b) \(\left(x^2-25\right)\left(x^2-5\right)< 0.\)
\(\Rightarrow x^2-25\) và \(x^2-5\) trái dấu.
mà \(x^2-25< x^2-5.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-25< 0.\\x^2-5>0.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2< 25.\\x^2>5.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< 5.\\x>\sqrt{5}\left(loại\right).\end{matrix}\right.\Rightarrow x< 5.\)
Vậy..........
trả lời đi mà