P = \(\dfrac{\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}}{\dfrac{5}{2015}+\dfrac{5}{2016}-\dfrac{5}{2017}}=\dfrac{\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}}{5\left(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}\right)}=\dfrac{1}{5}\)
\(P=\dfrac{\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}}{\dfrac{5}{2015}+\dfrac{5}{2016}-\dfrac{5}{2017}}=\dfrac{\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}}{5\left(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}\right)}=\dfrac{1}{5}\)
\(P=\dfrac{\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}}{\dfrac{5}{2015}+\dfrac{5}{2016}-\dfrac{5}{2017}}=\dfrac{\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}}{5.\left(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}\right)}=\dfrac{1}{5}\)