2)
b)Q=\(\dfrac{3x-3}{x-1}+\dfrac{x+1}{x-1}\)=\(\dfrac{3\left(x-1\right)+\left(x-1\right)}{x-1}\)
=\(\dfrac{3.2\left(x-1\right)}{x-1}=\dfrac{6\left(x-1\right)}{x-1}=6\)
Bài 1:
\(2x^2-2x=0\)
\(\Leftrightarrow2x\left(x-1\right)=0\)
+) TH1: \(2x=0\)
\(\Leftrightarrow x=0\)
+) TH2: \(x-1=0\)
\(\Leftrightarrow x=1\)
Vậy x = 0 hoặc x = 1.
Bài 2:
\(Q=\dfrac{3x-3}{x-1}+\dfrac{x-1}{x-1}\)
\(=\dfrac{3\left(x-1\right)}{x-1}+1\)
\(=3+1=4\)
1) 2x2−2x=0
=>2x2=2x
=>x2=x
=>x=1
vậy x=1 thỏa mãn điều kiện đề bài