Bài 1:
Đặt $n=9k+5$ với $k$ là số tự nhiên:
$n$ chia 7 dư 4, tức là $n-4\vdots 7$
$\Leftrightarrow 9k+1\vdots 7$
$\Leftrightarrow 2k+1\vdots 7$
$\Leftrightarrow 2k-6\vdots 7$
$\Leftrightarrow k-3\vdots 7$ nên $k$ có dạng $7m+3$ với $m$ tự nhiên.
Khi đó: $n=9(7m+3)+5=63m+32
$n$ chia $5$ dư $3$, nghĩa là $n-3\vdots 5$
$\Leftrightarrow 63m-29\vdots 5$
$\Leftrightarrow 3m+1\vdots 5$
$\Leftrightarrow 3m-9\vdots 5$
$\Leftrightarrow m-3\vdots 5$
$\Rightarrow m$ có dạng $5t+3$ với $t$ tự nhiên.
Khi đó: $n=63m+32=63(5t+3)+32=315t+221$ với $t$ tự nhiên.
Bài 2:
$S=1+3^2+3^3+...+3^{62}$
$3S=3+3^3+3^4+....+3^{63}$
Trừ theo vế:
$3S-S=3^{63}+3-(1+3^2)=3^{63}-7$
$2S=3^{63}-7$
Ta thấy: $2S=3^{63}-7\equiv (-1)^{63}-7\equiv -8\equiv 0\pmod 4$
$2S=9^{31}.3-7\equiv 3-7\equiv -4\equiv 4\pmod 8$
Nghĩa là $S$ chia hết cho $2$ nhưng không chia hết cho $4$ nên $S$ không là scp.