a: \(\Leftrightarrow\left(2m-2\right)^2-4\left(m^2-2\right)>=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+8>=0\)
=>-8m>=-12
hay m<=3/2
b: \(\Leftrightarrow\left(4m-4\right)^2-4\cdot\left(-2\right)\cdot\left(4m-6\right)>0\)
\(\Leftrightarrow16m^2-32m+16+32m-48>0\)
\(\Leftrightarrow16m^2>32\)
hay \(\left[{}\begin{matrix}m>\sqrt{2}\\m< -\sqrt{2}\end{matrix}\right.\)
\(a,\Delta'=\left[-\left(m-1\right)\right]^2-1\left(m^2-2\right)\\ =m^2-2m+1-m^2+2\\ =-2m+3\)
Để pt có nghiệm thì \(\Delta'\ge0\) hay
\(\Leftrightarrow-2m+3\ge0\\ \Leftrightarrow m\le\dfrac{3}{2}\)
\(b,\Delta'=\left[-2\left(m-1\right)\right]^2-\left(-2\right)\left(4m-6\right)\\ =4\left(m^2-2m+1\right)+2\left(4m-6\right)\\ =4m^2-8m+4+8m-12\\ =4m^2-8\)
Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\) hay
\(4m^2-8>0\\ \Leftrightarrow\left[{}\begin{matrix}x< -\sqrt{2}\\x>\sqrt{2}\end{matrix}\right.\)
a) x2 - 2(m-1)x + m2 - 2 = 0
△=[-2(m-1)]2-4.(m2-2)
=4(m-1)2-4m2+8
=4(m2+2m-1)-4m2+8
=4m2+8m-4-4m2+8
=8m+4
Để pt luôn có nghiệm thì △≥0
Hay 8m+4≥0
⇔8m≥-4
⇔m≤-2
Vậy m≤-2 thì pt có nghiệm