a/ \(\dfrac{a}{3}=\dfrac{b}{2}\Rightarrow\dfrac{a}{21}=\dfrac{b}{14};\dfrac{b}{7}=\dfrac{c}{5}\Rightarrow\dfrac{b}{14}=\dfrac{c}{10}\)
\(\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\Rightarrow\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}\)
Áp dụng t/c của dãy tỉ số = nhau có:
\(\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}=\dfrac{3a-7b+5c}{63-98+50}=\dfrac{30}{15}=2\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{2\cdot63}{3}=42\\b=\dfrac{2\cdot98}{7}=28\\c=\dfrac{2\cdot50}{5}=20\end{matrix}\right.\)
Vậy....................
b/ 7a = 9b = 21c => \(\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}\)
và a - b + c = -15
Áp dụng tccdts = nhau ta có:
\(\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}=\dfrac{a-b+c}{\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{21}}=\dfrac{-15}{\dfrac{5}{63}}=-189\)
=> \(\left\{{}\begin{matrix}a=-189\cdot\dfrac{1}{7}=-27\\b=-189\cdot\dfrac{1}{9}=-21\\c=-189\cdot\dfrac{1}{21}=-9\end{matrix}\right.\)
Vậy............
Dựa theo t/c dãy tỉ số bằng nhau mà làm :VV