Ôn tập toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kaitou Kid

Bài 1: Một người bán gạo lần thứ nhất bn đc 25% tổng số gạo. Lần thứ hai bn đc 30 kg. Vẫn thừa 12 kg. Tính số gạo bán ra lần đầu?

Bài 2: Cho biểu thức

A= \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+......+\dfrac{1}{2008.2011}\)

CMR: A < 1

Bài 3: Chứng tỏ rằng \(\dfrac{12n+1}{30n+2}\) là phân số tối giản ( n \(\in\) N )

Help me !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Nguyễn Huy Tú
27 tháng 8 2017 lúc 10:06

Bài 1:

Giải:

Đổi \(25\%=\dfrac{1}{4}\)

Phân số chỉ 42 kg gạo là:

\(1-\dfrac{1}{4}=\dfrac{3}{4}\) ( tổng số gạo )

Tổng số gạo là:
\(42:\dfrac{3}{4}=52\left(kg\right)\)

Số gạo bán ra lần đầu là:
\(52.\dfrac{1}{4}=13\left(kg\right)\)

Vậy...

Bài 2:

\(A=\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{2008.2011}\)

\(=\dfrac{1}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{2008.2011}\right)\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2008}-\dfrac{1}{2011}\right)\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{2011}\right)\)

\(=\dfrac{1}{3}-\dfrac{1}{6033}< 1\)

Bài 3:

Đặt \(UCLN\left(12n+1;30n+2\right)=d\left(d\in Z\right)\)

\(\Rightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}60n+5⋮d\\60n+6⋮d\end{matrix}\right.\Rightarrow1⋮d\)

\(\Rightarrow d\in\left\{1;-1\right\}\)

\(\Rightarrow\left(12n+1;30n+2\right)=1\)

\(\Rightarrow\dfrac{12n+1}{30n+2}\) tối giản

Vậy...

Ma Đức Minh
27 tháng 8 2017 lúc 10:29

Bài 1: Giải

Số phần trăm gạo còn lại sau lần bán thứ nhất là:

100-25=75(%)

Số gạo còn lại sau lần bán thứ nhất là:

30+12=42(kg)

Số gạo bán ra lần đầu là:

(42:75).25=14(kg)

Bài 2 Giải

A=\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{2008.2011}\)

A=\(\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{2008.2011}\right)\)

A=\(\dfrac{1}{3}.\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2008}-\dfrac{1}{2011}\right)\)

A=\(\dfrac{1}{3}.\left(\dfrac{1}{1}-\dfrac{1}{2011}\right)\)

A=\(\dfrac{1}{3}.\dfrac{2010}{2011}\)

A=\(\dfrac{670}{2011}\)

Bài 3 Giải

Để chứng minh 12n+1/30n+2 là phân số tối giản thì cần chứng tỏ 12n+1 và 30n+2 nguyên tố cùng nhau

Gọi ƯCLN(12n+1,30n+2)=d (d∈N)

=>12n+1 chia hết cho d

=> 5(12n+1) chia hết cho d

=> 60n+5 chia hết cho d

30n+2 chia hết cho d

=> 2(30n+2) chia hết cho d

=> 60n+4 chia hết cho d

=> (60n+5)-(60n+4) chia hết cho d

=> 1 chia hết cho d

=> d∈Ư(1)={1}

=> d=1

=>ƯCLN(12n+1,30n)=1

Vậy 12n+1/30n+2 là phân số tối giản

Hải Đăng
27 tháng 8 2017 lúc 10:26

Bài 3:

Đặt \(\left(12n+1;30n+2\right)=d\)

\(\Rightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow\left(12n+1;30n+2\right)=1\)

Vậy \(p/s\) \(\dfrac{12n+1}{30n+2}\) là phân số tối giản \(\left(đpcm\right)\)


Các câu hỏi tương tự
Linh Vũ
Xem chi tiết
Khánh Linh
Xem chi tiết
Adorable Angel
Xem chi tiết
Tamako Kitashirakawa
Xem chi tiết
Lê Thị Bích Thảo
Xem chi tiết
Tran Ngoc Hoa
Xem chi tiết
nguyễn ngọc khánh chi
Xem chi tiết
Nguyễn Khanh
Xem chi tiết
Nguyễn Thiện Nhân
Xem chi tiết