a, ĐKXĐ : \(x-1\ge0\)
=> \(x\ge1\)
Ta có : \(x+2\sqrt{x-1}-9=0\)
=> \(x-1+2\sqrt{x-1}+1-9=0\)
=> \(\left(\sqrt{x-1}+1\right)^2=9\)
=> \(\left[{}\begin{matrix}\sqrt{x-1}+1=3\\\sqrt{x-1}+1=-3\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\sqrt{x-1}=2\\\sqrt{x-1}=-4\left(VL\right)\end{matrix}\right.\)
=> \(x-1=4\)
=> \(x=5\left(TM\right)\)
Vậy ...
b, ĐKXĐ : \(x-2\ge0\)
=> \(x\ge2\)
Ta có : \(3x-\sqrt{x-2}-8=0\)
=> \(x-\frac{2.1}{6}\sqrt{x-2}-\frac{8}{3}=0\)
=> \(x-2-2.\frac{1}{6}\sqrt{x-2}+\frac{1}{36}-\frac{25}{36}=0\)
=> \(\left(\sqrt{x-2}-\frac{1}{6}\right)^2=\frac{25}{36}\)
=> \(\left[{}\begin{matrix}\sqrt{x-2}-\frac{1}{6}=\frac{5}{6}\\\sqrt{x-2}-\frac{1}{6}=-\frac{5}{6}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{x-2}=-\frac{2}{3}\left(L\right)\end{matrix}\right.\)
=> \(x-2=1\)
=> \(x=3\left(TM\right)\)
Vậy ....