Bài 1. Giải các phương trình sau:
a.\(\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)
b. \(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)
c. \(\left(x^2-1\right)\left(x+2\right)\left(x-3\right)=\left(x-1\right)\left(x^2-4\right)\left(x+5\right)\)
d. \(x^4+x^3+x+1=0\)
e. \(x^3-7x+6=0\)
h. \(x^4-4x^3+3x^2+4x-4=0\)
g. \(x^5-5x^3+4x=0\)
f. \(x^4-4x^3+12x-9=0\)
câu a, b, c dễ mà. Bạn áp dụng 7 hằng đẳng thúc là làm đc thoii!!
vd: a) \(\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)
\(\Rightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=\left(3x+2\right)\left(x-1\right)\left(x+1\right)\)
\(\Rightarrow\left(3x-2\right)\left(3x+2\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left(3x+2\right)\left(x+1\right)[\left(3x-2\right)-\left(x-1\right)]=0\)
\(\Rightarrow\left(3x+2\right)\left(x+1\right)\left(2x-1\right)=0\) (bạn phá ngoặc ra rồi tính là ra bước này)
\(\Leftrightarrow3x+2=0\) hoặc \(x+1=0\) hoặc \(2x-1=0\) ( đến đây bạn chia làm 3 trường hợp r tự tính nhé)
Chúc bạn học tốt!!
d/
\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^3+1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
e/
\(\Leftrightarrow x^3+x^2-6x-x^2-x+6=0\)
\(\Leftrightarrow x\left(x^2+x-6\right)-\left(x^2+x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)
h.
\(x^4-4x^3+4x^2-x^2+4x-4=0\)
\(\Leftrightarrow x^2\left(x^2-4x+4\right)-\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\end{matrix}\right.\)
g/
\(x\left(x^4-5x^2+4\right)=0\)
\(\Leftrightarrow x\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm1\\x=\pm2\end{matrix}\right.\)
f/
\(x^4-9-4x\left(x^2-3\right)=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x^2+3\right)-4x\left(x^2-3\right)=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x^2-4x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\pm\sqrt{3}\\x=1\\x=3\end{matrix}\right.\)
Câu a.b.c thì thôi đi. Còn mấy câu cồn lại e biết cách nhẩm nghiệm ko
b/ \(\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)+\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-1+x+1+x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
c/ \(\left(x-1\right)\left(x+2\right)\left(x+1\right)\left(x-3\right)-\left(x-1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=\frac{7}{5}\end{matrix}\right.\)