Bài 1:
ĐKXĐ của phân thức đã cho là:
\(x^2-4\neq 0\Leftrightarrow (x-2)(x+2)\neq 0\Leftrightarrow x\neq \pm 2\)
Bài 2:
a)
ĐKXĐ: \(x^3-4x\neq 0\Leftrightarrow x(x-2)(x+2)\neq 0\Leftrightarrow x\neq \pm 2; x\neq 0\)
Để phân thức đã cho bằng $0$ thì:
\(2x^2+10x+12=0\)
\(\Leftrightarrow x^2+5x+6=0\)
\(\Leftrightarrow (x+2)(x+3)=0\Rightarrow \left[\begin{matrix} x=-2\\ x=-3\end{matrix}\right.\)
Kết hợp với ĐKXĐ suy ra $x=-3$
b)
ĐKXĐ: \(x^3-2x^2+x\neq 0\Leftrightarrow x(x-1)^2\neq 0\Leftrightarrow x\neq 0; x\ne 1 \)
Để phân thức đã cho bằng $0$ thì:
\(x^3+x^2-x-1=0\)
\(\Leftrightarrow x^2(x+1)-(x+1)=0\)
\(\Leftrightarrow (x^2-1)(x+1)=0\)
\(\Leftrightarrow (x-1)(x+1)^2=0\Rightarrow \left[\begin{matrix} x=1\\ x=-1\end{matrix}\right.\)
Kết hợp với ĐKXĐ suy ra $x=-1$