ý b cm đồng dạng , suy ra cặp tỷ lệ thức là cm được.
ý b cm đồng dạng , suy ra cặp tỷ lệ thức là cm được.
cho tam giác ABC vuông tại A đường cao AH chia cạnh huyền thành 2 đoạn BH = 4 cm, HC = 6 cm. gọi M là trung điểm của AC.
a, Tính , AH, AD, AC. Tính số đo góc AMB.
b, kẻ AH\(\perp\)BM K thuộc BM chứng minh tam giác BKC\(\sim\) tam giác BHM
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
cho tam giác ABCvuông tai A đường cao AH chia cạnh huyền BC thành 2 đoạn BH=3,6cn và
HC= 6,4cm trên cạnh AC lấy điểm M (M≠A,M≠C) kẻ AD vuông góc với MB tại D
1,TÍNH AB . AC .GÓC B .GÓC C(làm tròn đến phút)
2 cm BD*BM=BH*BC
3 CM 4 điểm A B C D cùng thuộc 1 đường tròn. CM AC là tiếp tuyến của đường tròn đó
Bài 5 : (3 điểm ) Cho tam giác ABC vuông tại A có AC = 12 cm và BC = 13 cm Đường cao AH b/Kẻ HD vuông góc với AB tại D , kẻ HE vuông góc với AC tại E . Chứng minh : HB.HC=DA.DB+EA.EC
1. cho tam giác ABC vuông tại A, đường cao AH , đường trung tuyến AM
biết AB= 6cm , AC= 8cm.
a, Tính BC,CH,AH
b, Tính HM,AM,và diện tích AHM
c, kẻ HD vuông AB (D thuộc AB), HE vuông AC (E thuộc AC)
c/m : AD.AB=AE.AC
Cho △ABC vuông tại A, đường cao AH. Biết AB=3, AC=4
a) Tính AH, BH?
b) Chứng minh CB là tiếp tuyến của đường tròn (A, AH)
c) Kẻ tiếp tuyến BI và CK với đường tròn (A, AH) (I, K là tiếp điểm). Chứng minh:
1, BC=BI+CK
2) I, A, K thẳng hàng
Cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành 2 đoạn: BH=4cm, HC=6cm
a, Tính độ dài AH, AB,AC
b, Gọi M là trung điểm của AC. Tính số đo góc AMB
c, Kẻ Ak vuông góc BM(K thuộc BM)
Chứng minh: tam giác BKC đồng dạng tam giác BHM