Bài 1: Cho tam giác ABC, trên tia AC lấy điểm D sao cho CA = CD, trên tia BC lấy điểm E sao cho CB = CE .
a) Chứng minh: \(\Delta\)CAB = \(\Delta\)CDE
b) Chứng minh: AB // DE
c) Qua D vẽ đường thẳng x song song BE, x cắt AB tại F. Chứng minh BE = DF.
Bài 2: Cho tam giác ABC có \(\widehat{A}\) = 90 độ, M là trung điểm của cạnh AC. Trên tia đối của tia MB lấy điểm K sao cho MK = MB. Chứng minh rằng:
a) AK = BC b) AK // BC c) KC vuông góc với AC
Bài 3: Cho tam giác ABC có 3 góc nhọn, trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên tia đói của tia AC lấy điểm E sao cho AE = AC.
a) Chứng minh: \(\Delta\)ABC = \(\Delta\)ADE
b) Chứng minh: DE // BC
c) Từ E kẻ EH vuông góc với BD ( H \(\in\) BD ). Trên tia đối của EH lấy điểm F sao cho FH = EH. Chứng minh : AF = AC
Bài 1:
a: Xét ΔCAB và ΔCDE có
CA=CD
góc ACB=góc DCE
CB=CE
Do đó: ΔCAB=ΔCDE
b: Xét tứ giác ABDE có
C là trung điểm chung của AD và BE
nên ABDE là hình bình hành
Suy ra: AB//DE
c: Xét tứ giác BEDF có
BE//DF
BF//DE
Do đó: BEDF là hình bình hành
Suy ra: BE=DF