Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Athena

Bài 1: Cho tam giác ABC có góc A = 120 độ, đường phân giác AD (D thuộc BC). Vẽ DE vuông góc với AB, DF vuông góc với AC.
a) Chứng minh tam giác DEF đều.
b) Từ C kẻ đường thẳng song song với AD cắt AB tại M. CM tam giác AMC đều.
c. CM MC vuông góc với BC.
d. Tính DF và BD biết AD= 4cm.

Kinomoto Sakura
18 tháng 7 2021 lúc 15:36

undefined

Vậy ΔDEF đều

b) Vì AD là tia phân giác của ∠BAC (gt)

⇒ ∠DAB = ∠DAC = 1/2∠BAC = 60o

Vì AD//MC (gt)

⇒ ∠AMC = ∠DAB = 60o (hai góc nằm ở vị trí đồng vị)

∠AMC = ∠CAD = 60o (hai góc nằm ở vị trí so le trong)

Xét ΔAMC có:

Hai góc bằng nhau và bằng 60o 

⇒ ΔAMC đều

Vậy ΔAMC đều

Còn lại bạn tự làm nhé


Các câu hỏi tương tự
Kieuanh Nguyenngoc
Xem chi tiết
hue nguyen
Xem chi tiết
nhi nguyen
Xem chi tiết
Thảo Trần
Xem chi tiết
TRẦN THỊ TRÀ MY
Xem chi tiết
TRẦN THỊ TRÀ MY
Xem chi tiết
Phuong Truc
Xem chi tiết
Trịnh Tuyết
Xem chi tiết
Mai
Xem chi tiết