Bài 2:
Để vecto a vuông góc với vecto b thì 4k+3*(-4)=0
=>4k-12=0
=>k=3
Bài 2:
Để vecto a vuông góc với vecto b thì 4k+3*(-4)=0
=>4k-12=0
=>k=3
Cho tam giác ABC có A(2;1) , B(0;1) và C(-1;2) .
Tìm điểm K \(\in\) d: y = 2x-1 để \(\left|\overrightarrow{KA}-\overrightarrow{3KB}\right|\) đạt giá trị nhỏ nhất
Cho tam giác ABC. Chứng minh rằng:
a) \(S_{\Delta ABC}=\dfrac{1}{2}\sqrt{AB^2.AC^2-\left(\overrightarrow{AB}.\overrightarrow{AC}\right)^2}\)
b) \(b+c=2a\Leftrightarrow\dfrac{2}{h_a}=\dfrac{1}{h_b}+\dfrac{1}{h_c}\)
c) Góc A vuông \(\Leftrightarrow m_b^2+m_c^2=5m_a^2\)
cho tam giác ABC vuông tại A và AB=a , \(\widehat{BCA}\) = 30 , gọi D là trung điểm AC và lấy I sao cho ABID là hình chữ nhật
a) gọi K là điểm thuộc đoạn thẳng BC ( khác B, C ) , thỏa mãn \(\overrightarrow{BK}\) = x. \(\overrightarrow{BC}\) . tìm x sao cho 3 điểm A, K , I thẳng hàng
b) tìm tập hợp điểm M thỏa mãn 2MB2 + MC2 -MA2 = 2a2
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại A. Gọi M,N là điểm thỏa mãn \(\overrightarrow{MB}+2\overrightarrow{MA}=\overrightarrow{0},\overrightarrow{NC}+2\overrightarrow{NA}=\overrightarrow{0}\).Điểm E thuộc BN sao cho ME vuông góc với BC. Biết rắng góc NBC bằng 45 độ
a) Hay biểu thị \(\overrightarrow{CE}\) qua \(\overrightarrow{CA}\) và \(\overrightarrow{CB}\)
b) Cho E(3;-2) và phương trình đường thẳng CM: 2x+y-9=0. Tìm tọa độ điểm C
Cho tam giác ABC vuông tại A có AB=4. Kết quả \(\overrightarrow{BA}.\overrightarrow{BC}\)
Cho tam giác ABC vuông tại A có AB=a, AC=a\(\sqrt{3}\) và AM là trung tuyến. Tích vô hướng \(\overrightarrow{BA}.\overrightarrow{AM}\)
Cho tam giác ABC có AB=5, BC=7,AC=8
a) Từ đẳng thức \(\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{BC}\) ,Chứng minh công thức \(2\overrightarrow{AB}.\overrightarrow{AC}=\) AB2+AC2-BC2
Tính \(\overrightarrow{AB}.\overrightarrow{AC}\) , rồi suay ra giá trị của góc A
b) Tính \(\overrightarrow{CA}.\overrightarrow{CB}\)
Cho hai vecto a;b khác vecto 0 thỏa mãn \(\overrightarrow{a}.\overrightarrow{b}=\dfrac{1}{2}\left|-\overrightarrow{a}\right|\left|\overrightarrow{b}\right|\). Khi đó góc giữa hai vecto a và b là