Cho tam giác ABC cân tại A đường phân giác AD, trên tai đối tia DA lấy điểm M sao cho DM>DA. Chứng minh:
a)MB=MC b)MB>BA
Cho tam giác ABC vuông tại A AB bé hơn AC Gọi M là trung điểm của AC Trên tia đối của tia MB lấy điểm D sao cho MD = MB 1) CMR: AB=CD 2) CMR: AB+BC>2BM 3) CMR: góc CBM< góc ABM
Cho tam giác ABC vuông cân tại A , điểm D nằm giữa B và C ( AD không vuông góc với BC ) . Gọi E và F là hình chiếu của B và C trên AD a) So sánh BC với BE + CF b) Tam giác ABE = tam giác CAF c)BE mũ 2 + CF mũ 2 = AB mũ 2 d) gọi m là trung điểm của BC , chứng minh tam giác MBE = tam giác MAF e ) Tam giác MEF vuông cân
Cho tam giác ABC vuông tại A. Lấy M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA
a) Chứng minh tam giác ABM= tam giác CDA
b) AN=1/2BC
cho tam giác ABC vuông tại A , M là trung điểm của cạnh AB
a, BC= 10cm ,AB =6 cm tính AC
b, trên tia đối của tia MC lấy điểm D sao cho MD = MC cm tam giác MAC = tam giác MBD và AC=BD
c gọi K là điểm nằm trên đoạn thẳng AM sao cho AK =\(\frac{2}{3}\)AM . gọi N là giảo điểm của CK và AD . Gọi I là giao điểm của BN và CD cm CD= 3ID
5>Cho tam giác ABC, điểm P nằm giữa A và C Gọi E,F là chân đường vuông góc từ A và C đến BD.CM AC>AE+CE
6>Cho tam giác ABC nhọn, vẽ AD vuông BC, BE vuông AC CM AD+BE
cho tam giác ABC vuông cân tại A. qua A kẻ đường thẳng D sao cho BvàC cùng thuộc nửa mặt phẳng bờ là đường thẳng D. gọi I là trung điểm của BC. gọi H,M,K lần lượt là hình chiếu của B,I,C lên đường thẳng C
a, C/m tam giác BHA=tam giác AKC
b,C/m tam giác HIA=tam giác KIC
c, Đường thẳng D ở vị trí nào để diện tích tứ giác BCKH lớn nhất
cho tam giác abc vuông tại a có ab<ac đường trung trực bc cắt ab tại d m là điểm tùy ý trên ab
a,c/m d nằm giữa a và b
b,c/m md<hd