Bài 6: Hệ thức Vi-et và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thùy Linh Mai

Bài 1: Cho pt:x2-2(m+1)x+4m=0. Tìm m để phương trình có 2 nghiệm x1,x2 sao cho A=2x12+2x22-x1x2 nhận giá trị nhỏ nhất.

Bài 2:a, Cho pt: (a-3) x2-2(a-1) x+a-5=0.tìm a để pt có 2 nghiệm phân biệt .

b, Cho pt:(m-1)x2+2(m-1)x-m=0.Xác định m để pt có nghiệm kép. Tính nghiệm kép.

nguyen thi vang
10 tháng 8 2018 lúc 23:09

Bài 2 :

a) Pt : \(\left(a-3\right)x^2-2\left(a-1\right)x+a-5=0\)

a = a - 3

b = 2 (a-1) => b' = a-1

c = a-5

Đk1 :

\(a\ne0\)

=> \(a-3\ne0\)

=> \(a\ne3\)

Đk2 :

\(\Delta'>0\Rightarrow\left(a-1\right)^2-\left(a-3\right)\left(a-5\right)>0\)

\(\Leftrightarrow a^2-2a+1-a^2+8a-15>0\)

<=> -14 + 6a >0

<=> 6a > 14

<=> \(a>\dfrac{7}{3}\)

Vậy để pt có 2 nghiệm phân biệt thì a khác 3 và a > 7/3.

b) Pt : \(\left(m-1\right)x^2+2\left(m-1\right)x-m=0\)

a = m-1

b = 2 (m-1) => b' = m-1

c = -m

\(\Delta'=\left(m-1\right)^2-\left(m-1\right).\left(-m\right)=m^2-2m+1+m^2-m=2m^2-3m+1\)

Để pt có nghiệm kép thì :

\(\Delta'=0\)

<=> 2m2 -3m + 1 =0

<=> \(2m^2-2m-m+1=0\)

<=> \(\left(2m^2-2m\right)-\left(m-1\right)=0\)

<=> \(2m\left(m-1\right)-\left(m-1\right)=0\)

<=> \(\left(2m-1\right)\left(m-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2m-1=0\\m-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m=1\\m=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1}{2}\\m=1\end{matrix}\right.\)

\(\cdot TH1:x_1=x_2=\dfrac{-b'}{a}=\dfrac{-\left(\dfrac{1}{2}-1\right)}{\dfrac{1}{2}-1}=-1\)

\(\cdot TH2:x_1=x_2=\dfrac{-\left(1-1\right)}{1-1}\) mẫu phải khác 0 nên => không thỏa mãn.

nguyen thi vang
11 tháng 8 2018 lúc 7:08

Chỗ câu 2a (Đk2) mình xác định sai ạ, làm lại nhé :)

a = a-3

b = -2 (a -1) => b' = - (a-1)

c = a - 5

=> △' = \(b'^2-ac=\left(-a-1\right)^2-\left(a-3\right)\left(a-5\right)=9a-14\)

Để pt có 2 nghiệm phân biệt thì :

△' > 0

=> 9a - 14 > 0

=> 9a > 14

=> a > \(\dfrac{14}{9}\)


Các câu hỏi tương tự
Xxyukitsune _the_moonwol...
Xem chi tiết
Maneki Neko
Xem chi tiết
nguyen nguyen hoang
Xem chi tiết
Nguyễn Tuấn Duy
Xem chi tiết
Maneki Neko
Xem chi tiết
nguyễn văn quốc
Xem chi tiết
Hương Giang
Xem chi tiết
Ngô Chí Vĩ
Xem chi tiết
JoJo
Xem chi tiết
Candy Moonz
Xem chi tiết