Bài 2 :
a) Pt : \(\left(a-3\right)x^2-2\left(a-1\right)x+a-5=0\)
a = a - 3
b = 2 (a-1) => b' = a-1
c = a-5
Đk1 :
\(a\ne0\)
=> \(a-3\ne0\)
=> \(a\ne3\)
Đk2 :
\(\Delta'>0\Rightarrow\left(a-1\right)^2-\left(a-3\right)\left(a-5\right)>0\)
\(\Leftrightarrow a^2-2a+1-a^2+8a-15>0\)
<=> -14 + 6a >0
<=> 6a > 14
<=> \(a>\dfrac{7}{3}\)
Vậy để pt có 2 nghiệm phân biệt thì a khác 3 và a > 7/3.
b) Pt : \(\left(m-1\right)x^2+2\left(m-1\right)x-m=0\)
a = m-1
b = 2 (m-1) => b' = m-1
c = -m
\(\Delta'=\left(m-1\right)^2-\left(m-1\right).\left(-m\right)=m^2-2m+1+m^2-m=2m^2-3m+1\)
Để pt có nghiệm kép thì :
\(\Delta'=0\)
<=> 2m2 -3m + 1 =0
<=> \(2m^2-2m-m+1=0\)
<=> \(\left(2m^2-2m\right)-\left(m-1\right)=0\)
<=> \(2m\left(m-1\right)-\left(m-1\right)=0\)
<=> \(\left(2m-1\right)\left(m-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2m-1=0\\m-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m=1\\m=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1}{2}\\m=1\end{matrix}\right.\)
\(\cdot TH1:x_1=x_2=\dfrac{-b'}{a}=\dfrac{-\left(\dfrac{1}{2}-1\right)}{\dfrac{1}{2}-1}=-1\)
\(\cdot TH2:x_1=x_2=\dfrac{-\left(1-1\right)}{1-1}\) mẫu phải khác 0 nên => không thỏa mãn.
Chỗ câu 2a (Đk2) mình xác định sai ạ, làm lại nhé :)
a = a-3
b = -2 (a -1) => b' = - (a-1)
c = a - 5
=> △' = \(b'^2-ac=\left(-a-1\right)^2-\left(a-3\right)\left(a-5\right)=9a-14\)
Để pt có 2 nghiệm phân biệt thì :
△' > 0
=> 9a - 14 > 0
=> 9a > 14
=> a > \(\dfrac{14}{9}\)