Bài 1: Cho phương trình: x2 - 2(m+3)x + 2m - 1 = 0
a) Giải phương trình với \(m=\frac{1}{2}\)
b) Tìm m để pt có nghiệm x = 1 và tìm nghiệm còn lại
c) Chứng minh rằng pt luon có 2 nghiệm phân biệt với mọi m
Bài 2: Cho pt:
x2 - 3x + 2m + 6 = 0 (1)
x2 + x - 2m - 10 =0 (2)
a) Giải pt trên với m = -3
b) Tìm m để 2 pt trên có nghiệm chung
c) Chứng minh rằng có ít nhất 1 trong 2 pt trê có nghiệm
Bài 1 : a ) Tại m = \(\frac{1}{2}\)ta được phương trình mới là :
x2 - 7x = 0
<=> x ( x - 7 ) = 0
<=> x = 0 hoặc x - 7 = 0
<=> x = 0 hoặc x = 7
c) x2 - 2( m + 3 )x + 2m - 1 = 0 ( a = 1 ; b = -2m - 6 ; c = 2m - 1 )
Δ = ( - 2m - 6 )2 - 4 . 1 . ( 2m - 1 )
= 4m2 + 24m + 36
= 4 ( m2 + 6m + 9 )
= 4 ( m + 3 )2 ≥ 0 , với ∀m