Cho ∆ABC vuông tại A đường cao AH a) C/m ∆BAH đồng dạng ∆ACH b) C/m AH² = HB . HC c) Tính S∆BAH/S∆BCA biết AB = 6cm , AC = 8cm d) tia phân giác của góc B cắt AC tại M và cắt AH tại N . C/ m AM.AN = MC.NH Giúp mình bài này với ạ mình cần gấp , cảm ơn ạ!
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giác góc A, D ∈ BC. a) Tính DB/DC? b) Kẻ đường cao AH (H ∈ BC). Chứng minh rằng: AH/CH=AB/CA
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giác góc A, D ∈ BC. a) Tính DB/DC? b) Kẻ đường cao AH (H ∈ BC). Chứng minh rằng: AH/CH=AB/CA
Cho tam giác ABC vuông tại A, chân H của đường cao AH chia cạnh huyền BC thành hai đoạn có độ dài 4cm và 9 cm
Gọi D và E là hình chiếu của H trên AB và AC
a) Tính độ dài DE
b) Các đường thẳng vuông góc với DE tại D và E cắt BC theo thứ tự tại M và N. Chứng minh M là trung điểm của BF, N là trung điểm của CH
c) Tính diện tích tứ giác DENM
Cho tam giác ABC vuông tại A có AB-6cm, AC -8cm, AD là tia phân giác của BAC (DEBC). b) Từ D kẻ DE vuông góc với AB tại E (E thuộc AB). Tính đo dài DE, AE và diện tích tứ giác AEDC; c) Gọi O là giao điểm của AD và CE. Qua O kẻ đường thẳng song song với AC cắt BC và AB lần lượt tại M và N. Chứng minh rằng OM=ON.
Cho tam giác ABC vuông tại A , đg cao AH a) cm tam giác AHB đồng dạng với tam giác CAB . Và AH.CB=AB.AC b) Gọi D, E lần lượt là hình chiếu của H trên Ab , AC .Tứ giác DEHA là hình gì?Vì sao??? c) Cho AB=9cm , AC=12cm . tính DE d) cm : AH^2 = DA.DB+EA.EC
Cho ∆ABC vuông tại A đường cao AH . Kẻ HE vuông góc với AC , Gọi K là giao điểm của AH và EB a)EH //AB b)Chứng minh ∆CAH đồng dạng ∆CBA c) Qua K kẻ đường thẳng // AB cắt AC tại M và cắt BC tại N . Chứng minh KM =KN d) Chứng minh CK đi qua trung điểm của AB
Cho tam giác ABC nhọn (AB<AC). Gọi AH là đường cao. Kẻ HM⊥AB tại M, HN⊥AC tại N.
a) Chứng minh ΔAHM đồng dạng ΔABH.
b) AH=8cm, B=6cm. Tính AM.
c) Trên tia đối tia NM lấy điểm E sao cho góc AEN= góc ACE. Chứng minh ΔAHE cân