Bài 1 : Cho biểu thức A = \(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right).\dfrac{3x}{1-2x+x^2}\)( với x ≠ 0 ; x≠ \(\pm\) 1 )
a, Rút gọn biểu thức A
b, Tìm các giá trị nguyên của x để biểu thức A có giá trị nguyên
Bài 2 : Tính
a, x(x2 + 5 )
b, (3x -5 )(2x + 1 ) - (6x2 - 5 )
c, ( 2x + 3)(2x - 3 ) - ( 2x + 1)2
d, ( 2x4 + x3 - 3x2 + 5x - 2 ) : ( x2 - x + 1 )
Bài 3 : phân tích các đa thức sau thành nhân tử
a, x3 - 2x2 + x
b, x2 - 2x - y2 + 1
Các bạn ơi ! giúp mik với !! Mai kiểm tra rồi
Bài 2:
a. \(x\left(x^2+5\right)=x^3+5x\)
b. \(\left(3x-5\right)\left(2x+1\right)-\left(6x^2-5\right)\)
\(=6x^2-7x-5-6x^2+5=-7x\)
c. \(\left(2x+3\right)\left(2x-3\right)-\left(2x+1\right)^2\)
\(=4x^2-9-4x^2-4x-1=-4x-10=\)
d. \(\left(2x^4+x^3-3x^2+5x-2\right):\left(x^2-x+1\right)=2x^2+3x-2\)
Bài 3:
a. \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)
b. \(x^2-2x-y^2+1=\left(x-1\right)^2-y^2=\left(x+y-1\right)\left(x-y-1\right)\)
Câu 1:
a,
\(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right).\dfrac{3x}{1-2x+x^2}\)
= \(\left[\dfrac{1}{x\left(x+1\right)}-\dfrac{x\left(2-x\right)}{x\left(x+1\right)}\right].\dfrac{3x}{\left(x-1\right)^2}\)
= \(\dfrac{1-2x+x^2}{x\left(x+1\right)}.\dfrac{3x}{\left(x-1\right)^2}\)
= \(\dfrac{\left(x-1\right)^2.3x}{x\left(x+1\right)\left(x-1\right)^2}\)
= \(\dfrac{3}{x+1}\)
b, Để A đạt giá trị nguyên:
=> x + 1 thuộc Ư(3) = {-3;-1;1;3}
x+1 | -3 | -1 | 1 | 3 |
x | -4 | -2 | 0 | 2 |
Vậy x thuộc {-4;-2;0;2}.
Bài 3:
a/ \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)
b/ \(x^2-2x-y^2+1=\left(x^2-2x+1\right)-y^2=\left(x-1\right)^2-y^2=\left(x-1-y\right)\left(x-1+y\right)\)