a. BH, CH lần lượt là hình chiếu của AB, AC lên BC ; AB<AC
\(\Rightarrow BH< CH\) (qh giữa đx và hc)
BH, CH lần lượt là hình chiếu của MB, MC lên BC ; BH<CH
\(\Rightarrow MB< MC\) (qh giữa đx và hc)
a. BH, CH lần lượt là hình chiếu của AB, AC lên BC ; AB<AC
\(\Rightarrow BH< CH\) (qh giữa đx và hc)
BH, CH lần lượt là hình chiếu của MB, MC lên BC ; BH<CH
\(\Rightarrow MB< MC\) (qh giữa đx và hc)
Cho tam giác nhọn ABC, AB<AC. Kẻ AH vuông góc với BC (H ∈ BC). Gọi M là 1 điểm nằm giữa A và H, tia BM cắt AC ở D. Chứng minh rằng:
a) BM<CM
b) DM<DH
Cho tam giác nhọn ABC, AB nhỏ hơn AC. Kẻ AH vuông góc BC, M là 1 điểm nằm giữa A và H, tia BM cắt AC ở D. CMR: a, BM bé hơn CM b, DM bé hơn DH
Cho tam giác ABC có AB < AC. Gọi H là hình chiếu của A trên đường thẳng BC. M là điểm bất kì trên đoạn AH. Tia BM cắt cạnh AC tại D. Chứng minh:
a) MB < MC
b) MD < HD
GT |
△ABC có 3 góc nhọn ( AB <AC). AH ⊥ BC ( H ∈ BC ) ; M nằm giữa A và H. BM giao AC tại D |
KL
|
a, Chứng minh BM < CM. b, Chứng minh DM < DH
|
1. Tam giác ABC nhọn. AB< AC. AH vuông góc BC tại H. Lấy M thuộc AH. BM giao AC tại D. So sánh:
a) BM và CM.
b) DM và DH.
c) MB+MC và AB+AC.
2. Điểm D nằm trong tam giác ABC, AD= AB. Chứng minh AB<AC.
Bài 1: Cho tam giác ABC có góc C > góc B. Kẻ AH ⊥ BC tại H. So sánh HB và HC
Bài 2: Cho tam giác nhọn MNK, MN < MK. Từ M kẻ MH ⊥ NK (H thuộc NK). Trên tia HK lấy điểm E sao cho NH=HE. Từ N kẻ NA ⊥ MK (A thuộc MK). Trên tia MA lấy điểm P sao cho MN=NP. Chứng minh rằng:
a) MN=ME
b) MA=AP
Bài 3: Cho tam giác ABC, có AB > AC. Từ A hạ AH ⊥ BC. Trên đoạn thẳng AH lấy điểm M (M không trùng A, H). Chứng minh rằng:
a) MB > MC
b) BA > BM
Bài 4: Cho đường thẳng a và điểm A nằm ngoài đường thẳng a. Gọi H là hình chiếu của điểm A xuống đường thẳng a. Trên đường thẳng a lấy hai điểm B và C. Tính độ dài các đường xiên AB, AC biết AH=6cm, HB=8cm và HC=10cm.
Bài 5: Cho tam giác ABC vuông tại A. Gọi H là hình chiếu của A trên BC. Biết góc BAH < góc CAH. Chứng minh rằng: HB < HC.
Bài 1: Cho tam giác ABC có góc C > góc B. Kẻ AH ⊥ BC tại H. So sánh HB và HC
Bài 2: Cho tam giác nhọn MNK, MN < MK. Từ M kẻ MH ⊥ NK (H thuộc NK). Trên tia HK lấy điểm E sao cho NH=HE. Từ N kẻ NA ⊥ MK (A thuộc MK). Trên tia MA lấy điểm P sao cho MN=NP. Chứng minh rằng:
a) MN=ME
b) MA=AP
Bài 3: Cho tam giác ABC, có AB > AC. Từ A hạ AH ⊥ BC. Trên đoạn thẳng AH lấy điểm M (M không trùng A, H). Chứng minh rằng:
a) MB > MC
b) BA > BM
Bài 4: Cho đường thẳng a và điểm A nằm ngoài đường thẳng a. Gọi H là hình chiếu của điểm A xuống đường thẳng a. Trên đường thẳng a lấy hai điểm B và C. Tính độ dài các đường xiên AB, AC biết AH=6cm, HB=8cm và HC=10cm.
Bài 5: Cho tam giác ABC vuông tại A. Gọi H là hình chiếu của A trên BC. Biết góc BAH < góc CAH. Chứng minh rằng: HB < HC.
Bài 1: Cho tam giác ABC có góc C > góc B. Kẻ AH ⊥ BC tại H. So sánh HB và HC
Bài 2: Cho tam giác nhọn MNK, MN < MK. Từ M kẻ MH ⊥ NK (H thuộc NK). Trên tia HK lấy điểm E sao cho NH=HE. Từ N kẻ NA ⊥ MK (A thuộc MK). Trên tia MA lấy điểm P sao cho MN=NP. Chứng minh rằng:
a) MN=ME
b) MA=AP
Bài 3: Cho tam giác ABC, có AB > AC. Từ A hạ AH ⊥ BC. Trên đoạn thẳng AH lấy điểm M (M không trùng A, H). Chứng minh rằng:
a) MB > MC
b) BA > BM
Bài 4: Cho đường thẳng a và điểm A nằm ngoài đường thẳng a. Gọi H là hình chiếu của điểm A xuống đường thẳng a. Trên đường thẳng a lấy hai điểm B và C. Tính độ dài các đường xiên AB, AC biết AH=6cm, HB=8cm và HC=10cm.
Bài 5: Cho tam giác ABC vuông tại A. Gọi H là hình chiếu của A trên BC. Biết góc BAH < góc CAH. Chứng minh rằng: HB < HC.