Bài 1: Cho ∆ABC đều, kẻ AH vuông góc với BC tại H. Trên tia đối của tia BC lấy
điểm E sao cho BE = BC. Trên tia đối của tia CB lấy điểm D sao cho CB = CD.
a) Chứng minh rằng ∆AEB = ∆ADC
b) Từ D kẻ DF vuông góc với AC tại F. Chứng minh rằng ∆CHF cân
c) Chứng minh rằng AD//HF
d) Từ B kẻ BM vuông góc AE tại M, từ C kẻ CN vuông góc với AD tại N. Gọi
I là giao điểm của BM và CN. Chứng minh AI là phân giác của BAC