Bài 1 :Hình trụ có chiều cao gấp 3 lần đường kính đáy. Biết thể tích V=162 pi cm^3. Tính Stp của hình trụ.
Bài 2 : - Cho A nằm ngoài (O, R). Kẻ tiếp tuyến AB, AC. H là giao của OA và BC, kẻ dây MN qua H với M thuộc cung nhỏ BC và BM < CM
chứng minh HM.HN= HB.HC và chứng minh góc CAN=MAB
làm hộ mk bài này vs. cảm ơn rất nhiều
Cho điểm B nằm ngoài đường tròn O.Vẽ tiếp tuyến BC với O.Vẽ cát tuyến BMN không đi qua O (C€MN). Kẻ dây cung CA vuông góc với BN tại H,MK vuông góc với BC a.Cm góc KHM=góc CNM b.Gọi E là giao điểm của CO và BN Cm BH.BE=BM.BN
Cho điểm B nằm ngoài đường tròn O.Vẽ tiếp tuyến BC với O.Vẽ cát tuyến BMN không đi qua O (C€MN). Kẻ dây cung CA vuông góc với BN tại H,MK vuông góc với BC a.Cm góc KHM=góc CNM b.Gọi E là giao điểm của CO và BN Cm BH.BE=BM.BN
Cho (O), từ điểm A nằm ngoài đường tròn kẻ tiếp tuyến AB, AC với đường tròn. I là điểm thuộc cung nhỏ BC, từ I kẻ ID, IE, IF vuông góc với AB, BC, AC; IB cắt DE tại M, IC cắt EF tại N
a) Chứng minh tứ giác BEID và tứ giác CEIF nội tiếp
b) Chứng minh tam giác IDE đồng dạng với tam giác IEF
c) Chứng minh IE vuông góc với MN
cho (O;R) từ điểm A nằm ngoài đường tròn (O) kẻ tiếp tuyến AB và AC (B,C là tiếp điểm)
từ điểm m thuộc cung nhỏ BC kẻ tiếp tuyến thứ 3 với đường tròn tiếp tuyến này cắt AB,AC lần lượt tại D và E. OD và OE lần lượt cắt BC tại I và K chưng minh OM,DE và IK đồng quy
Từ điểm A nằm ngoài đường tròn tâm O kẻ hai tiếp tuyến AB và AC( B và C là tiếp điểm). Đường thằng đi qua A cắt (O) tại D và E ( D nằm giữa A và E), kẻ dây cung EN song song với BC, DN cắt BC tại I. Chứng minh rằng BI= CI
1. Cho đường tròn
(O;3cm) và điểm A thỏa mãn OA=5cm. Kẻ các tiếp tuyến AB,AC với đường tròn. Gọi H là giao điểm của AO với BC.
a) Tính OH.
b) Qua điểm M bất kỳ thuộc cung nhỏ BC kẻ tiếp tuyến với (O) cắt AB,AC theo thứ tự tại D và E. Tính chu vi tam giác ADE.
Cho đường tròn tâm O, điểm A nằm ngoài đường tròn. Kẻ 2 tiếp tuyến AB và AC vớ đường tròn(B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M rồi kẻ đường vuông góc MI,MH,MK xuống các cạnh BC,CA,AB.
Chứng minh MI mũ 2 = MH . MK
Cho đường tròn (O;R) và các tiếp tuyến AB, AC cắt nhau tại A nằm ngoài đường tròn (B, C là các tiếp điểm). Gọi H là giao điểm của BC và OA.
a) CMR: OA vuông góc với BC và \(OH.OA=R^2\)
b) Kẻ đường kính BD của đường tròn (O) và kẻ đường thẳng CK vuông góc với BD (K thuộc D). CMR: AO song song với CD và AC.CD=CK.AO
c) Gọi I là giao điểm của AD và CK. CMR: Tam giác BIK và tam giác CHK có diện tích bằng nhau