\(A=2^2+3^2+4^2+5^2+...+100^2\)
\(A+1=1^2+2^2+3^2+4^2+5^2+...+100^2\)
Ta có: \(1^2+2^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\)
\(A+1=\dfrac{100\cdot\left(100+1\right)\cdot\left(100\cdot2+1\right)}{6}\)
\(A+1=338350\Rightarrow A=338349\)