B1:
\(-\dfrac{15}{12}x+\dfrac{3}{7}=\dfrac{6}{5}x-\dfrac{1}{2}\)
\(\Rightarrow\dfrac{3}{7}+\dfrac{1}{2}=\dfrac{6}{5}x+\dfrac{15}{12}x\)
\(\Rightarrow\dfrac{13}{14}=\dfrac{49}{20}x\)
\(\Rightarrow x=\dfrac{130}{343}\)
Vậy \(x=\dfrac{130}{343}\)
B2:
\(25-y^2=8\left(x-2009\right)^2\)
Điều kiện:\(25-y^2\le0\)
\(\Rightarrow y\)là số lẻ
\(\Rightarrow y\in\left\{1;3;5\right\}\)
\(TH1:y=3\)
\(\Rightarrow25-1^2=24\)
\(\Rightarrow8.\left(x-2009\right)^2=24\)
\(\Rightarrow\)Ko có số nào thỏa mãn \(x\)
\(TH2:y=3\)
\(\Rightarrow25-3^2=16\)
\(\Rightarrow8.\left(x-2009\right)^2=16\)
\(\Rightarrow\)Ko số nào thỏa mãn \(x\)
\(TH3:y=5\)
\(\Rightarrow25-25=0\)
\(\Rightarrow8.\left(x-2009\right)^2=0\)
\(\Rightarrow x=2009\)
Vậy \(y=5;x=2009\)