a) Ta có: \(A=\frac{2^{2017}}{2^{2017}}+\frac{2^{2016}}{2^{2017}}+\frac{2^{2015}}{2^{2017}}+...+\frac{2^1}{2^{2017}}+\frac{1}{2^{2017}}\)
\(=\frac{1+2^1+2^2+...+2^{2016}+2^{2017}}{2^{2017}}\)
Đặt: B=\(1+2^1+2^2+...+2^{2017}\)
\(\Leftrightarrow2B=2^1+2^2+2^3+....+2^{2017}+2^{2018}\)
\(\Leftrightarrow2B-B=2^{2018}-1\)
\(\Leftrightarrow B=2^{2018}-1\)
\(\Rightarrow A=\frac{B}{2^{2017}}=\frac{2^{2018}-1}{2^{2017}}\)
Mik chỉ biết làm phần a thôi
b/ Sử dụng quy tắc: \(\frac{a+c}{b+c}< \frac{a}{b}\) với \(\left\{{}\begin{matrix}a;b;c>0\\a>b\end{matrix}\right.\)
\(B=\frac{2^{10}-1}{2^{10}-3}>\frac{2^{10}-1+2}{2^{10}-3+2}=\frac{2^{10}+1}{2^{10}-1}\)
\(\Rightarrow B>A\)