Ta có: \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}+\dfrac{1}{2-\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\dfrac{5}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x-4-5-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-4\sqrt{x}+3\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-4\right)+3\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\)