\(A=\dfrac{3n+2}{n-1}=\dfrac{3+5}{n-1}\)
Để \(3n+2⋮n-1\) thì \(n-1\inƯ\left(5\right)\)
Do đó:
\(n-1=1\Rightarrow n=2\)
\(n-1=-1\Rightarrow n=0\)
\(n-1=5\Rightarrow n=6\)
\(n-1=-5\Rightarrow n=-4\)
Vậy \(n=\left\{-4;0;2;6\right\}\) thì \(3n+2⋮n-1\)
Suy ra : 1/3A=3n+2/3n-3=3n+2/3n+2-5
1/3A=1-5/3n+2