Cho hình thang ABCD có 2\(\overrightarrow{AB}\) = \(\overrightarrow{DC}\). AC = 8; BD = 6 và
\(\left(\overrightarrow{AC};\overrightarrow{BD}\right)=120^0\). Khi đó giá trị của S = AD + BC là
A. \(\dfrac{13+2\sqrt{5}}{2}\)
B. \(\dfrac{14+4\sqrt{7}}{3}\)
C. \(\dfrac{15+2\sqrt{10}}{4}\)
D. \(6+4\sqrt{3}\)
1. Số k nhỏ nhất sao cho pt \(2x\left(kx-4\right)-x^2+6=0\) vô nghiệm
2. Pt : \(ax^2+bx+c=0\)
a. Có nghiệm khi nào
b. Vô nghiệm khi nào
c. Có nghiệm duy nhất khi nào
d. Có 2 nghiệm pb , có 2 ng khi nào
Câu 1:Phương trình \((x^2-x-2)\sqrt{x+1}=0\) có bao nhiêu nghiệm?
Câu 2: Cho tam giác ABC, D là điểm thuộc cạnh BC sao cho DC=2DB. Nếu \(\overrightarrow{AD}=m\overrightarrow{AB}+n\overrightarrow{AC}\) thì m và n bằng bao nhiêu?
Cho tam giác ABC có độ dài các cạnh BC=a, AC=b, AB=c thỏa mãn \(a^4+b^4+c^4=2a^2b^2+2a^2c^2\). Tìm số đo góc \(\widehat{BAC}\)
Câu 6: Cho tam giác ABC đều, cạnh bằng 5cm. Tỉnh các tích vô hưởng vec AB . vec AC vec AB . vec BC
Cho đường tròn tâm (O) và một điểm M nằm ngoài đường tròn. Từ M kẻ tiếp tuyến MA,MB với (O). Trên cung nhỏ AB lấy điểm C bất kì, từ C kẻ tiếp tuyến thứ ba với (O) cắt MA,MB lần lượt tại E,F. EO cắt AC tại H,FO cắt BC tại K. Qua O kẻ đường thằng song song với AB cắt MA,MB lần lượt tại P,Q
a) Chứng minh tứ giác BFCO nội tiếp
b)Chứng minh OE.OH=OF.OK và góc EOP=góc OFQ
c) Chứng minh\(EP+EQ\ge PQ\)
cho hai số thực x,y thỏa mãn điều kiện x-3\(\sqrt{x+1}=3\sqrt{y+2}-y\).hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức K=x+y
Tìm giá trị nhỏ nhất của tham số m đê phương trình: \(x+\sqrt{x-1}=\sqrt{x-1}+m-2\) có nghiệm
Chứng minh tam giác ABC thỏa mãn \(\left\{{}\begin{matrix}a^2=b^2+c^2-bc\\b^2=a^2+c^2-ac\end{matrix}\right.\)
thì là tam giác đều