(a+b)(a2-b2)+(b+c)(b2-c2)+(c+a)(c2-a2)
=(a+b)(a2-b2)+(b+c)[-(a2-b2)-(c2-a2)]+(c+a)(c2-a2)
=(a+b)(a2-b2)-(b+c)(a2-b2)-(b+c)(c2-a2)+(c+a)(c2-a2)
=(a2-b2)(a-c)-(a2-c2)(a-b)
=(a-b)(a+b)(a-c)-(a-c)(a+c)(a-b)
=(a-b)(a-c)(a+b-a-c)
=(a-b)(a-c)(b-c)
\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
\(=a^3-ab^2+a^2b-b^3+b^3-bc^2+b^2c-c^3+c^3-a^2c+ac^2-a^3\)
\(=bc\left(b-c\right)+a^2\left(b-c\right)-a\left(b-c\right)\left(b+c\right)\)
\(=\left(b-c\right)\left(bc+a^2-ab-ac\right)\)
\(=\left(b-c\right)\left(a-c\right)\left(a-b\right)\)