\(\sqrt{4,5}-\dfrac{1}{2}\sqrt{72}+5\sqrt{\dfrac{1}{2}}=\dfrac{3\sqrt{2}}{2}-3\sqrt{2}+\dfrac{5\sqrt{2}}{2}\\ =\dfrac{8\sqrt{2}}{2}-3\sqrt{2}=4\sqrt{2}-3\sqrt{2}=\sqrt{2}\)
\(\sqrt{4,5}-\dfrac{1}{2}\sqrt{72}+5\sqrt{\dfrac{1}{2}}=\dfrac{3\sqrt{2}}{2}-3\sqrt{2}+\dfrac{5\sqrt{2}}{2}\\ =\dfrac{8\sqrt{2}}{2}-3\sqrt{2}=4\sqrt{2}-3\sqrt{2}=\sqrt{2}\)
rút gọn
a.\(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}\sqrt{20}+\sqrt{5}\)
b.\(\sqrt{\dfrac{1}{2}}+\sqrt{4,5}+\sqrt{12,5}\)
c.\(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
d.\(0,1.\sqrt{200}+2.\sqrt{0,08}+0,4.\sqrt{50}\)
Rút gọn các biểu thức sau :
a) \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}\sqrt{20}+\sqrt{5}\)
b) \(\sqrt{\dfrac{1}{2}}+\sqrt{4,5}+\sqrt{12,5}\)
c) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
d) \(0,1\sqrt{200}+2.\sqrt{0,08}+0,4.\sqrt{50}\)
a) \(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
b) \(\sqrt{150}+\sqrt{1,6}.\sqrt{60}+4,5\sqrt{2\dfrac{2}{3}}-\sqrt{6}\)
c) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
d) \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)
rút gọn
a.\(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
b.\(\sqrt{150}+\sqrt{1,6}.\sqrt{60}+4,5.\sqrt{2\dfrac{2}{3}}-\sqrt{6}\)
c.\(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
d.\(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)
sqrt(18) - 1/2 * sqrt(72) + 4sqrt(1/2) + sqrt(72)
Thực hiên các phép tính:
a) \(2\sqrt{75}-4\sqrt{12}-3\sqrt{50}-\sqrt{72}\)
b) \(\sqrt{ab}+2\sqrt{\dfrac{b}{a}}-\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{1}{ab}}\left(a>0,b>0\right)\)
c) \(5\sqrt{a}-3\sqrt{25a^3}+2\sqrt{36ab^2}-2\sqrt{9a}\left(a>0,b>0\right)\)
d) \(\dfrac{2\sqrt{6}-2\sqrt{3}}{\sqrt{2}-1}-\dfrac{3+\sqrt{3}}{\sqrt{3}}+\sqrt{27}\)
e) \(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
f) \(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\sqrt{54}+5\sqrt{1\dfrac{1}{3}}\)
g) \(0,1\sqrt{200}+2\sqrt{0,08}+0,4\sqrt{50}\)
bài 1 ; tính
A=\(2\sqrt{18}-4\sqrt{32}+\sqrt{72}+3\sqrt{8}\)
B=\(\dfrac{1}{\sqrt{3}-2}-\dfrac{1}{\sqrt{3}+2}\)
C=\(\sqrt{3-2\sqrt{15}}-\sqrt{5}\)
D=\(\dfrac{x+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\) với x>0;y>0
Rút gọn các biểu thức sau:
a) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
b) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
c) \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)
d) \(\left(\dfrac{1}{2}-\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}\)
giúp nha
bài 1 : rút gọn a, \(\sqrt{12}-2\sqrt{8}+3\sqrt{75}-\sqrt{72}\)