\(A=-9\left(x^2+\dfrac{2}{9}x-\dfrac{5}{9}\right)\)
\(=-9\left(x^2+2\cdot x\cdot\dfrac{1}{9}+\dfrac{1}{81}-\dfrac{46}{81}\right)\)
\(=-9\left(x+\dfrac{1}{9}\right)^2+\dfrac{46}{9}< =\dfrac{46}{9}\)
Dấu '=' xảy ra khi x=-1/9
\(A=-9\left(x^2+\dfrac{2}{9}x-\dfrac{5}{9}\right)\)
\(=-9\left(x^2+2\cdot x\cdot\dfrac{1}{9}+\dfrac{1}{81}-\dfrac{46}{81}\right)\)
\(=-9\left(x+\dfrac{1}{9}\right)^2+\dfrac{46}{9}< =\dfrac{46}{9}\)
Dấu '=' xảy ra khi x=-1/9
tìm x biết :
a,6x.(3x+5)-2x(9x-2) =17
b,2x.(3x-1)-3x(2x+11)-70=0
Thực hiện phép tính:
a, \(\dfrac{2}{9x^2+6x+1}\) + \(\dfrac{3x}{1-9x^2}\)
b, (\(\dfrac{2x+1}{2x-1}\) + \(\dfrac{2x-1}{2x+1}\))
Thực hiện phép tính
a,\(\left(3x^4-8x^3-10x^2+8x-5\right):\left(3x^2-2x+1\right)\)
b,\(\left(2x^3-9x^2+19x-15\right):\left(x^2-3x+5\right)\)
c,\(\left(8x^3-y^3\right)\left(4x^2-y^2\right):\left(2x+y\right)\left(4x^2-4xy+y^2\right)\)
Tìm đa thức A thỏa mãn điều kiện sau :
\(\dfrac{A\left(x-5\right)}{x^2-4x-5}=\dfrac{3x^2+9x}{x^2+4x+3}\)
\(\dfrac{x^2+x-6}{A\left(x-3\right)}=\dfrac{\left(5x-1\right)\left(x-2\right)}{5x^3-x^2+15x-3}\)
\(\dfrac{x^2-25}{2x^2+7x-15}=\dfrac{\left(x-5\right)A}{2x^2+x-6}\)
Chủ đề 1: Thực hiện phép tính
1) (2x+3).(2x-3)-4x.(x+5)
2) 6/x2 - 9 + 5/x-3 + 1/x+3
3)5x.(x-3)+(x-2)2
4) 4x/x+2 - 3x/x-2 + 12x/ x2 - 4
5) x(x+2) - ( x-3)(x+3)
6) 1/3x-2 + -4/3+2 + 6-3x/9x2 - 4
7)2x.(3x-1)+(x+2)2
8) 6/x+3 - 6/x-3 + 9x+9/x2 - 9
9) (2x - 5)2 - x(4x-13)
10) x-1/x + 4/x+8 + 8/x2 + 8x
11) (2x+1)2 + (x-5)(x+5)-x(5x+7)
12) 6/x2-9 + 5/x-3 + 1/x+3
13) 6x(5x-2)+(2x+3)2
14) x/x-2 + -2/x-3 + x(1-x)/x2-9
15) (x-2)2-x(x+5)
16) 2/x+3 + 3/x-3 + -6/x2-9
17) 3x(x-3) + (3x-1)2
A=\(\dfrac{4x^2+\left(2x+3\right)\left(x+1\right)-9}{9x^2-4}\)
a) Rút gọn A
b) Tìm các số nguyên x để A đạt giá trị nguyên
Thực hiện phép tính :
\(\dfrac{2x}{x-5}-\dfrac{3x^2+9x}{x^2-25}+\dfrac{x-9}{x+7}\)
Phân tích đa thức thành nhân tử:
+)5x2y2+15x2+30xy2
+)(x-2)(x-3)+4-x2
+)x2-7x+12
+)x3-2x2y+xy2-9x
+)x2-25+y2+2xy
+)x2-x-12
+)5x25xy-x-y
+)12y(2x-5)+6xy(5-2x)
+)16x2+24x-8xy-6y+y2
+)(x+3)(x+6)(x+9)(x+12)+81
c) \(\dfrac{y^4-1}{y^3+y^2+y+1}=\)
d)\(\dfrac{2x^2-9x+7}{-2x^2-x+28}=\)
thực hiện phép tính: \(\dfrac{4\left(x+3\right)^2}{\left(3x+5\right)^2-4x^2}-\dfrac{x^2-25}{9x^2-\left(2x+5\right)^2}-\dfrac{\left(3x-3\right)^2-x^2}{\left(4x+15\right)^2-x^2}\)