Lời giải lớp 11
\(S=A-1=1+2^1+2^2+...+2^{20}\)
\(\left\{{}\begin{matrix}U_1=1\\q=2\end{matrix}\right.\) \(\Rightarrow S=\dfrac{u_1\left(q^{n+1}-1\right)}{q-1}=2^{21}-1\) \(\Rightarrow A=2^{21}\)
A = 4+22+23+24+....+220
Đặt B = 22+23+24+....+220
2B = 23+24+25+....+221
B = 2B - B = 221 - 22
=> A = 4 + (221 - 22)
=> A = 22+221-22
=> A = 221