\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2012}}\)
\(2A=2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2012}}\right)\)
\(2A=2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2011}}\)
\(2A-A=\left(2+1+...+\dfrac{1}{2^{2011}}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^{2012}}\right)\)
\(A=2-\dfrac{1}{2^{2012}}\)