Giải các phương trình sau:
\(a,\dfrac{3}{2}\sqrt{4+12x}-\dfrac{5}{3}\sqrt{9+27x}-\dfrac{1}{4}\sqrt{16+48x}=1\)
\(b,\sqrt{x^2-x+\dfrac{1}{4}}=3\)
Cho biểu thức: \(A=\dfrac{\sqrt{x}-1}{2\sqrt{x}+1}-\dfrac{3}{1-2\sqrt{x}}-\dfrac{4\sqrt{x}+4}{4x-1}\) và \(B=\dfrac{\sqrt{x}-4}{\sqrt{x}}\)với x > 0 , x = 1/4
a. TÍnh giá trị của biểu thức B biết \(x=\sqrt{28-16\sqrt{3}}+2\sqrt{3}\)
b. Rút gọn biểu thức A
Cho em đáp án tất cả các câu và lời giải của câu 1 , 2 , 4 , 11 , 12 , 15 , 16 , 18 , 19 , 20 với ah :(((
Giải các phương trình sau:
1) \(\sqrt{2x+4}-2\sqrt{2-x}=\dfrac{12x-8}{\sqrt{9x^2+16}}.\)
2) \(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}.\)
(x^2-16)(x-1)(x-9)
(x^2-16)(x-1)(x-9)=0
Cho a,b,c,d dương thỏa mãn \(a^2+b^2+c^2+d^2=4.\)Chứng minh:
\(16\left(2-a\right)\left(2-b\right)\left(2-c\right)\left(2-d\right)\ge\left(a+b\right)\left(b+c\right)\left(c+d\right)\left(d+a\right)\)
Giải hệ phương trình \(\left\{{}\begin{matrix}x^3+2y^2=16\\y^3+2x^2=16\end{matrix}\right.\)
\(\dfrac{x^2-4x-80}{x^2-16}-\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\)