\(A=\left(-7\right)+\left(-7\right)^2+......+\left(-7\right)^{2006}+\left(-7\right)^{2007}\)
\(=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+\left[\left(-7\right)^4+\left(-7\right)^5+\left(-7\right)^6\right]+.......\) \(+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)
\(=\left(-7\right)\left[1+\left(-7\right)+\left(-7\right)^2\right]+......+\left(-7\right)^{2005}\left[1+\left(-7\right)+\left(-7\right)^2\right]\)
\(=\left(-7\right).43+\left(-7\right)^3.43+......+\left(-7\right)^{2005}.43\)
\(=43\left[\left(-7\right)+\left(-7\right)^3+.....+\left(-7\right)^{2005}\right]\).
Suy ra A chia hết cho 43.
A=(-7+-7^2+-7^3)+.....+(-7^2005+-7^2006+-7^2007)
A=-7(1+-7+-7^2)+.....+-7^2005(1+-7+-7^2)
A=-7.43+....+-7^2005.43\(⋮\)43\(\Rightarrow\)dpcm
b)\(m^2-2mn+n^2+3mn\)
=\(\left(m-n\right)^2+3mn⋮9\)
=\(3mn⋮3\)
\(\Rightarrow\left(m-n\right)^2⋮3\)
\(\Rightarrow\left(m-n\right)^2⋮9\)
\(\Rightarrow3mn⋮9\)
\(\Rightarrow mn⋮3\)
\(\Rightarrow\)m hoạc n\(\)\(⋮\)3
Giả sử m\(⋮\)3,m-n\(⋮\)
\(\Rightarrow\)n\(⋮3\)
\(\Rightarrow\)dpcm