a)Tìm số nguyên sao cho 4n-5 chia hết cho n-3
b)Chứng minh rằng:
S=\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{2}\)
a, Cho b là số tự nhiên, b>1. Chứng minh rằng: \(\dfrac{1}{b}-\dfrac{1}{b+1}< \dfrac{1}{b^2}< \dfrac{1}{b-1}-\dfrac{1}{b}\)
b, Áp dụng phần a: Cho S\(=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\). Chứng minh rằng: \(\dfrac{2}{5}< S< \dfrac{8}{9}\)
Chứng minh rằng P>3 biet P= \(\dfrac{5}{2×1}+\dfrac{4}{1×11}+\dfrac{3}{11×2}+\dfrac{1}{2×15}+\dfrac{13}{15×4}+\dfrac{15}{4×43}+\dfrac{13}{43×8}\)
Cho \(A=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2019}\)
Chứng minh A ko phải là số tự nhiên
Cho \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2014^2}+\dfrac{1}{2015^2}+\dfrac{1}{2016^2}\). Chứng minh rằng: A không phải là số tự nhiên
Các bạn giúp với :<
Bài 1:
a, CMR: A = \(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{21}{10^2.11^2}< 1\)
b, Cho B = \(\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+\dfrac{24}{25}+...+\dfrac{2499}{2500}.\) CMR: B không phải là số nguyên.
c, So sánh: C = \(\dfrac{2}{2^1}+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{2021}{2^{2020}}\) với 3.
1.Tính giá trị các biểu thức sau
a, A = \(\dfrac{4}{7.31}+\dfrac{6}{7.41}+\dfrac{9}{10.41}+\dfrac{7}{10.57}\)
b, B = \(\dfrac{7}{19.31}+\dfrac{5}{19.43}+\dfrac{3}{23.43}+\dfrac{11}{23.57}\)
2.Tìm x biết
\(\dfrac{x}{6}+\dfrac{x}{10}+\dfrac{x}{15}+\dfrac{x}{21}+\dfrac{x}{28}+\dfrac{x}{36}+\dfrac{x}{45}+\dfrac{x}{55}+\dfrac{x}{66}+\dfrac{x}{78}=\dfrac{220}{39}\)
3. a, Biết a + 4b ⋮ 13 (a, b ∈ N). Chứng minh rằng 397a - 11b ⋮ 13
b, Cho M = b - \(\dfrac{2017}{2018}\left(-a+b\right)-\left(\dfrac{1}{2018}b+\dfrac{2015}{2017}c-a\right)-\left(\dfrac{2}{201}c+a\right)+c\)
Trong đó b, c ∈ Z và a là số nguyên âm. Chứng minh rằng M luôn có giá trị dương
4. a, Tìm tất cả các cặp số nguyên khác 0 sao cho tổng của chúng bằng tổng các nghịch đảo của chúng
b, Tìm số nguyên tố \(\overline{ab}\) (a > b > 0) sao cho \(\overline{ab}-\overline{ba}\) là số chính phương
5. Tìm các số tự nhiên a và b thỏa mãn \(\left(100a+3b+1\right)\left(2^a+10a+b\right)=225\)
Tìm các số tự nhiên a, b, c sao cho :
\(a,\dfrac{a}{3}+\dfrac{b}{4}=\dfrac{a+b}{3+4}\)
\(b,\dfrac{52}{9}=5+\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c}}}\)
a) Tìm cặp số nguyên n sao cho n chia hết cho 2n - 4
b) Tính tổng S = 1 - 2 + 22 - 23 + 24 - 25 + 26 - 27 + ... - 22013 + 22014
c) Chứng minh :
\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + ... + \(\dfrac{1}{2012}\) - \(\dfrac{1}{2013}\) + \(\dfrac{1}{2014}\) < \(\dfrac{2}{5}\)