Cho x,y,z là các số dương thỏa mãn các điều kiện \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\) và \(\left|x+y\right|=\left|z-1\right|\). Tìm x,y,z
Tìm các số nguyên dương x; y; z thoả mãn: \(\left(x-y\right)^3+\left(y-z\right)^2+2015.\left|x-z\right|=2017\)
Cho x, y, z thỏa mãn \(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}\). Chứng minh rằng: \(\left(x-z\right)^3=8\cdot\left(x-y\right)^2\left(y-z\right)\)
giúp bài toán nâng cao nha
Cho các số x, y, z khác 0 thỏa mãn : \(\frac{y+x-z}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Tính giá trị của biểu thức : \(M=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
Tìm các số(nghiệm) x , y , z trong phương trình sau :
\(x^{2016}+\left|y-2015\right|+\sqrt{z^2+4}=2\)
Cho 3 số hữu tỉ x, y, z thỏa mãn với xyz(3x + y + z)(3y + z + x)(3z + x + y) \(\neq\) 0 thỏa mãn điều kiện \(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}\). Tính giá trị biểu thức:
A = \(\left(2+\dfrac{y+z}{x}\right)\left(2+\dfrac{z+x}{y}\right)\left(2+\dfrac{x+y}{z}\right)\)
chứng minh rằng không có 3 số x,y,z thỏa mãn\(\left\{\begin{matrix}\left|x\right|< \left|y-z\right|\\\left|y\right|< \left|z-x\right|\\\left|x\right|< \left|x-y\right|\end{matrix}\right.\):
CMR: Nếu a.(y + z) = b.(x + z) = c.(x + y)
trong đó a;b;c là các số khác nhau và khác 0 thì
\(\frac{y-z}{a.\left(b-c\right)}=\frac{z-x}{b.\left(c-a\right)}=\frac{x-y}{c.\left(a-b\right)}\)
Tìm x , y , z thỏa mãn :
\(\sqrt{\left(x-3\sqrt{5}\right)^2}+\sqrt{\left(y+3\sqrt{5}\right)^2}\) + I x + y + z I = 0