Cho x, y, z thỏa mãn \(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}\). Chứng minh rằng: \(\left(x-z\right)^3=8\cdot\left(x-y\right)^2\left(y-z\right)\)
1. Chứng tỏ rằng: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
2. Tìm các số nguyên x, y, z, t sao cho:
\(\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|=2011\)
Cho x,y,z là các số dương thỏa mãn các điều kiện \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\) và \(\left|x+y\right|=\left|z-1\right|\). Tìm x,y,z
cho \(a\left(y+z\right)=b\left(x+z\right)=c\left(x+y\right)\)
cmr\(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)
giúp bài toán nâng cao nha
Cho các số x, y, z khác 0 thỏa mãn : \(\frac{y+x-z}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Tính giá trị của biểu thức : \(M=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
tìm x,y,z thuộc z biết ;
\(\left|x-4\right|+\left|x-10\right|+\left|x-2020\right|+\left|y-2015\right|+\left|z-2016\right|=2016\)
Tìm x , y , z thỏa mãn :
\(\sqrt{\left(x-3\sqrt{5}\right)^2}+\sqrt{\left(y+3\sqrt{5}\right)^2}\) + I x + y + z I = 0
Có bao nhiêu hệ số ( x,y,z) đồng thời thỏa mãn hai điều kiện \(\left(x-\frac{1}{5}\right).\left(y+\frac{1}{2}\right)\cdot\left(z-3\right)=0\) và x+1 = y+2 = z+3
Tìm các số nguyên dương x; y; z thoả mãn: \(\left(x-y\right)^3+\left(y-z\right)^2+2015.\left|x-z\right|=2017\)